Posts

Join us for our next webinar!

 

Resilience Capabilities for the Factory of the Future

The webinar will provide insights to one of the key capabilities of CyberFactory#1: Resilience. The keynote speech is given by Sauli Eloranta, Professor of Practice at VTT, on “Industry challenge to resilience in the factory of the future”. Afterwards, experts from a number of project partners will discuss the different aspects that need to be considered for a resilient Factory of the Future. The first half focuses on access management approaches and protection of AIs. After a short Q&A, presentations are given on monitoring of the FoF and dealing with cyberattacks, followed by another Q&A.

 


Date: 28.04.2021

Time: 14.00 – 16.10 CEST

Registration: Click here.

 

14.00:             Welcome

Jarno Salonen, VTT

Keynote: Industry challenge to resilience in the factory of the future

Sauli Eloranta, VTT


14.20:             How to create trust with comprehensive identity and access management

Markku Korkiakoski, Netox

Don’t make me think: an intuitive access management approach

Diogo Santos, Sistrade


14.40:             How to protect AI from manipulation attempts

Ching-Yu Kao, Fraunhofer AISEC

Aspects of preventing AI manipulation

Seppo Heikura, Houston Analytics


15.00:              Q&A


15.10:             How to enhance resilience by monitoring the FoF

Mario Brauer, Airbus CyberSecurity Germany

Monitoring different aspects of human behaviour on the shop-floor

Jorge Oliveira, ISEP


15.30:             Architectural approach to effectively detect cyberattacks

Murat Lostar, Lostar

How to remediate and recover from a cyberattack

Jari Partanen, Bittium


15.50:              Q&A


16.00              Wrap Up

Jarno Salonen, VTT

 

Keynote Speaker:

Sauli Eloranta (Professor of Practice at VTT Technical Research Centre of Finland)

Sauli Eloranta, M. Sc. (Tech.), began working as Professor of Practice at VTT on 1 January 2020. Eloranta, elected the CTO of the Year in Finland in 2019, came to VTT with a long experience of promoting technology and digitisation in industry and maritime transport.

Before VTT, Eloranta acted as Head of Innovation and Technology at Rolls-Royce Marine, later Kongsberg Maritime. Eloranta earned the CTO of the Year title granted by the Federation of Finnish Technology Industries for his merits as an active influencer in the Finnish innovation scene and promotor of autonomous marine traffic. He chaired the One Sea Autonomous Maritime Ecosystem in 2016-2019. Sauli has chaired the Business Finland digital advisory board and is a member of the transport sector growth programme. In addition, he has been involved in supporting the collaboration of the private sector and societal actors.

In his role as Professor of Practice, Eloranta focuses on the overall resilience of the Finnish society. His area also covers cyber security, autonomous systems and smart transport & mobility. Recently, Sauli has given program management support to Finland´s Ministry of Economics & Employment (TEM) in establishing domestic production of face masks for public health care.

CyberFactory#1 Welcomes LISA to the Team

 

We are proud to announce that the CyberFactory#1 Consortium was joined by LISA Deutschland GmbH in February 2021. LISA Group is an internationally known company for Intelligent Systems and learning algorithms, and has extensive experinece in developing Systems for Aircraft and Space Operations.

Within the project LISA will provide an autonomous anomaly bot aimed at detecting cybersecurity anomalies to enhance production and manufacturing in the factory of the future. The bot will be used within the use cases of Airbus Defense and Space (Spain) but it can be applied to detect cybersecurity anomalies in any environment. You can read more about their addition to the project here.

 

 

Are there hidden costs of untrusted technology in 5G private networks?

In some European metropolitan areas, you can already see a 5G symbol on your mobile phone display. Nevertheless, most networks are still in the planning phase and mobile network operators (MNOs for short) have not yet made a final decision on which equipment provider they will purchase the network technology from. This applies even more to private corporate networks, so-called campus networks, despite the decision being potentially significant for the security of the factory of the future.

In many European countries, there are currently discussions about the economic possibilities in connection with the new mobile communications standard 5G. This concerns possible leaps in productivity, but also the security gaps and dependencies associated with greater networking that would arise if these new mobile networks were built with Chinese technology, for example. As a result of these discussions, some states have excluded untrusted network equipment suppliers from building domestic 5G networks or set the regulatory hurdles so high that the result is tantamount to a ban.  The question which is slowly moving up the agenda is: is it necessary to also regulate private networks with respect to the technology they use? From the perspective of an economist this should only be the case if using untrusted technology has a detrimental effect on customers, suppliers or employees for which they are not compensated. Economist call that negative externalities.

Network equipment providers for 5G networks are expected to have a high level of trustworthiness in order to participate in an infrastructure that controls large parts of a factory of the future. It is particularly difficult for Chinese suppliers to establish this credibility. They are often seen as untrustworthy, operating from a country without sufficient rule of law, which exercises strict state control over their business conduct and management. Moreover, Western intelligence agencies, cybersecurity firms and the media regularly report that China is the country of origin for numerous attempts at industrial espionage.

If companies with such origins are nevertheless involved in the deployment of 5G networks in Europe, this will come at a significant cost. Only part of these costs are incurred by the company operating the network and choosing the network providers. A large part of the costs must be borne by other parts of society, which in absence of further regulation have no influence on the choice of network provider.

Even when the factory of the future decides which providers to procure 5G network technology from, they do not take all costs into account – either because they are hidden costs that will be incurred later (life-cycle costs) or because they are borne by others than the MNOs (external costs). Of course, many security-related costs will also occur if 5G networks are built exclusively with trusted technology. However, these costs will be lower because a trusted provider is a cooperating partner in securing the network from external influences.

If non-trusted providers are a part of a private 5G network, additional efforts will have to be made

  • to test and verify the software updates provided.
  • to share information with other private network operators, government agencies responsible for network security, and with suppliers and customers of the cyber factory of the future. New information sharing and analysis centers need to be established among industry participants.
  • to build additional sensors into the network to monitor network traffic and detect unintended data flows to third parties.
  • To develop and integrate new AI tools into network management as an early warning system for covert data exfiltration.
  • to devote resources to enforce regulatory policies and compliance to compensate for the lack of trust in the network.
  • to cover damages caused by cyber-attacks by spending (more) money on cyber insurance to deal with the financial consequences.

If a 5G network contains untrusted technology, more of the burden to protect data or machines controlled over the network falls on the operator, but potentially also on other parts of their value chain. The latter will have to spend more resources on classic cybersecurity tools or will have to leave the value chain that makes the cyber-factory of the future and thus will not be able to realize potential productivity gains.

European 5G technology providers will have a hard time competing with companies that do not need to make a profit in order to stay in the 5G business – for example because they are backed by a state for strategic reasons. To internalize the external costs and to guarantee a level playing field, it should be considered to not only regulate nationwide networks, but to include private 5G campus networks. The goal is to either exclude non-trusted technology or to require operators of campus networks to invest in the necessary additional protection when using non-trusted technology.

Authors: Johannes Rieckmann and Tim Stuchtey, BIGS

A more detailed description and estimate of the hidden costs of untrusted vendors in 5G networks can be found in the policy paper and the country studies for Germany, France, Italy and Portugal. The virtual presentation of the policy paper takes place on the 16th of March at 2pm (CET).

Virtual Panel – CyberFactory: How to make the Factory of the Future efficient and secure?

On the 9th of December we held our virtual panel on “CyberFactory#1: How to make the factory of the future efficient and secure”. Our speakers, Adrien Bécue, İrem Hilavin and Jari Partanen, presented the project, the use-case of Vestel and aspects of FoF resilience before answering questions such as on human-machine relations or what the benefits of this project might be for companies that are not directly involved. Below you can find the presentation slides. We look forward to many more events in the new year!

 

 

Abstract:

As factories digitalise and adopt automation technologies, they unlock new business models, manufacturing processes and logistics methods – as well as alternative roles for the people and machines that work in the factory. At the same time, these processes result in more complex IT and OT systems, presenting novel cyber security challenges and potentially leading to dangerous new interdependencies.

Based on early results from the European research project CyberFactory#1, our panel discussed both the opportunities and challenges represented by the digitalisation and automation of factories, including what the transition towards a new factory system of systems may look like – but also the new threats that organisations may face if security and resilience are not prioritised early in the process.

 

Speakers:

Adrien Bécue, Project Leader CyberFactory#1, Head of Innovation, Airbus CyberSecurity, France

Jari Partanen, Task Leader CyberResilience, Head of Quality, Environment and Technology Management, Bittium, Finland

İrem Hilavin, Work Package Leader Integration & Validation, SW Design Architect, Vestel, Turkey

 

 

Towards Digital Twins for Optimizing the Factory of the Future

Abstract

Logistics are essential regarding the efficiency of factories, and therefore their optimization increases productivity. This paper presents an approach and an initial implementation for optimizing a fleet of automated transport vehicles, which transports products between machines in the factory of the future. The approach exploits a digital twin derived from a model of the factory representing the artifacts and information flow required to build a valid digital twin. It can be executed faster than real-time in order to assess different configurations, before the best-fitting choice is applied to the real factory. The paper also gives an outlook on how the digital twin will be extended in order to use it for additional optimization aspects and to improve resilience of the transport fleet against anomalies.

Access to Document (upon request)

Link

Authors

Patrick Eschemann, Phillip Borchers, Linda Feeken, Ingo Stierand, Jan Zernickel & Martin Neumann

Paper Presentation at ISAmI 2020

Prof. Dr. Isabel Praça of the School of Engineering (ISEP) / Polytechnic Institute of Porto (IPP) will present a paper titled: “FullExpression – Using transfer learning in the classification of human emotions” at ISAmI 2020 – the International Symposium on Ambient Intelligence – later in October this year.

The paper addresses the topic of how emotions can be detected to pave the way for mental states like fatigue, lack of attention, or similar symptoms detection. This is ISEP background research with the intention to apply it to the capabilities of Human Machine optimization and safety capabilities of CyberFactory.

CF#1 is now part of EFFRA portal

CyberFactory#1 is now listed as a project on the European Factories of the Future Research Association (EFFRA) innovation portal. It is for now the only ITEA project that is part of the portal.

You can find more information here: https://portal.effra.eu/projects.

We are delighted to be in the company among these others ambitious and innovative projects!

Call for Papers: Workshop on Cyber-Physical System Modeling

Workshop on Cyber-Physical System Modeling: Applications for Industry 4.0 Optimization and Resilience – Call for Papers

In conjunction with ESM 2020, October 21 – October 23, 2020, Toulouse, France

This workshop focuses on the development and application of methods for modeling and simulation of CPS for the factory of the future (FoF).

With the advent of Smart Factory, digitalization and automation processes have moved into the focus of industry. The primary goal is not the optimization of a single production plant, but of the factory as a whole by augmenting physical assets with advanced digital technologies, such as the internet of things (IoT), artificial intelligence (AI) and robots. From a modeling perspective, the individual components of the factory thus become cyber-physical systems (CPS) that communicate, analyze, and act upon information, enabling more flexible and responsive production.

The organizers invite contributions with a focus towards CPS in the FoF that describe problem statements, trends, and emerging ideas in the engineering and application of CPS in industrial production.

Topics include, but are not limited to:

  • Requirements on CPS modeling for optimization and resilience of the FoF
  • Architectures for the FoF
  • Application of existing CPS models to manufacturing: benefits and gaps
  • Usage of digital twins for optimization and resilience in the FoF
  • Data lake exploitation for the FoF
  • Models & Simulations for the identification of threats on safety and security in the FoF
  • Tool support for modeling and simulation of the FoF
  • Uncertainties and predictions in the FoF models
  • Modeling of human-machine-interaction in the FoF
  • Distributed manufacturing
  • Cyber resilience modeling for the FoF

Paper format:

Participants may submit a 5-8 page full paper (single spaced, double column) in PDF format. Paper formatting guidelines can be found at https://www.eurosis.org/conf/esm/2020/submissions.html. All accepted papers will be published in the ESM’2020 Conference Proceedings.

Workshop format:

The workshop will be held as part of the European Simulation and Modelling Conference (ESM) 2020 to take place in Toulouse, France on October 20-23, 2020. It will feature peer-reviewed paper presentations organized according to the topics defined above. Papers not exceeding 8 pages must be submitted electronically via email (see: https://www.eurosis.org/conf/esm/2020/email-reply.html) in PDF format and must be conform to the submission guidelines (see: https://www.eurosis.org/conf/esm/2020/submissions.html).

The IEEE transaction templates can be used to get a suitable layout (see: https://journals.ieeeauthorcenter.ieee.org/create-your-ieee-journal-article/authoring-tools-and-templates/ieee-article-templates/templates-for-transactions/).

Each submission will be reviewed by at least three members of the Program Committee and will be evaluated on the basis of originality, importance of contribution, soundness, evaluation, quality of presentation and appropriate comparison to related work. The program committee as a whole will make final decisions about which submissions to accept for presentation at the conference.

Important Dates:

Paper Submission deadline: Jun 25th, 2020

Notification of acceptance/rejection: Aug 25th, 2020

Camera ready paper: Sep 30th, 2020

Workshop: Oct 21th-23th, 2020*

Organizers:

Linda Feeken (OFFIS e.V.), Eva Catarina Gomes Maia (Instituto Superior de Engenharia do Porto),  Frank Oppenheimer (OFFIS e.V.), Isabel Praça (Instituto Superior de Engenharia do Porto), Ingo Stierand (OFFIS e.V.)

Contact:

Linda Feeken, linda.feeken@offis.de

Conference website: https://www.eurosis.org/conf/esm/2020

 

*programme of the ESM is not yet fixed, workshop will be on one of the three conference days

 

Finnish Consortium with First Steps towards Improved FoF Security

When developing Factories of the Future, security is also an important aspect. CyberFactory#1 will respond to this challenge by developing a set of safety and security capabilities. One of these capabilities is cyber resilience. Although the development work has not yet started, CyberFactory#1’s Finnish partners prepared and presented a Cyber Resilience Starting Point Demo in the project review at Oulu in January.

Figure 1 A part o fthe demo set-up

Resilient communications

A key resilience function in FoF systems, including IIoT, is the ability to maintain constant connectivity to industrial control systems and other systems on a continuous basis. A single network may not provide sufficient reliability in critical manufacturin  g systems. Therefore, in order to build resilient manufacturing systems, a seamless network failover is relevant. The scenario in Figure 2 demonstrates IIoT device network switching for resilient communications.

Figure 2 Demo scenario 

Continuously up-to-date IIoT devices

A common flaw in IIoT systems is the cumbersome or non-existent update management system. Administrator needs to be provided with insight on the current rate of deployment of up-to-date and outdated devices, and with capability to monitor the update progress in real-time, using the device management console dashboards. The scenario in Figure 3 demonstrates the use of standards based device management (LWM2M) and the standard mechanism for updating IIoT gateway remotely.

Figure 3 Demo scenario for standards based device management and remote updates

Dynamic reconfiguration of IIoT devices

Dynamic security policies in IIoT devices are an important enabler for resilience of IIoT systems. Based on IIoT device produced data (and changes in certain data points) the security policy of the IIoT device gets updated from the device management server. This scenario demonstrated how dynamic reconfiguration enables the recovery from incidents and disaster situations.

The demo was created in collaboration with Bittium, Netox, VTT and Rugged Tooling, using the knowledge of each partner to create a realistic environment. “It was great to able to contribute to creating the traffic needed, and test our sensor in the mutually created environment”, says Esa from Rugged Tooling. “Bittium SafeMove® Analytics was adapted to the demo in order to demonstrate the fleet of the IIoT devices, in order to detect the devices and required updates for cyber resilient operations. We were also able to connect the system seamlessly and wirelessly with the cloud connectivity provided by Netox”” clarified Björn from Bittium.

This Starting Point Demo was a great collaboration effort and a remarkable first step towards the Kick-off of Work Package 5: FoF dynamic risk management and resilience in April 2020.

Involved Partners: Bittium, Netox, Rugged Tooling, VTT Technical Research Centre of Finland

New Business Models for the Creation of Value in the Factory of the Future

One of the main objectives of CyberFactory#1 is to devise innovative ways of delivering value to the several industry sectors involved in the project through the enhancement of optimization and resilience of the production environments. The project has recently delivered a set of new business models featuring value proposition that go beyond traditional approaches, based on the intelligent product servitization (i.e. transforming product sales into services provision), the knowledge extraction from data and the focus on intellectual property (i.e. enhancing the exploitation and protection of the industrial intellectual property).

Innovative business models for eight industry sectors

The project maps eight paradigmatic sectors and actors in the Factory of the Future (FoF) value chain, divided into two main value chain stages: users (i.e. industrial sectors which represent the end users of the new technologies and approaches developed in CyberFactory#1 – Figure 1) and suppliers (i.e. industrial sectors which provide enabling technologies to be applied in the end user activities – Figure 2).


Figure 1 – CyberFactory#1 FOF Value Chain – Users

Figure 2 – CyberFactory#1 FOF Value Chain – Suppliers

For each one of these sectors, the CyberFactory#1 developed a business model. The work, coordinated by each leading industry partner in the project, started with a rigorous analysis of the internal and external environments (including competition and market player analysis) and consolidated into a business model canvas. The business model canvas was then extended to a full-fledged business model. During this process the Cyberfactory#1 partners provided their input.

The business models were presented at the ICTurkey event in Istanbul (July 5th 2019) by the project coordinator, further raising the interest in the project of potential external partners, in particular concerning the application and exploitation of the project technologies.

Data, as a base for services

The “factory of the future” paradigm envisions a production environment in which massive amounts of data flow bottom-up from the shop floor to the highest levels of the management. This data yields a great value since it contains useful information that can be used to increase efficiency and performance as well as to enhance decision-making. However, this amount of data flow needs to be secure from unintended use and has to be trustable.

The new business models focus on the exploitation of data to extract valuable information and insights in order to make it an integral part of the transformation of products into services. Thereby they are providing increased value to industrial organizations and their customers. The exploitation of data lakes is at the core of the CyberFactory#1 business models.

Data exploitation is the key to more profitable business models based on service provision, which relies on continuous flow of value to customers instead of discrete product sale transactions (i.e. sales of distinct items). The continuous flow of value is provided through the “as-a-service” paradigm, meaning that high value services can be provided in a continuous way. Intelligence “as-a-service” can be provided through on-demand knowledge discovery from data, as well as Artificial Intelligence as-a-service (for example, provision of on-demand insight reports regarding production optimization). Management applications such as Enterprise-Resource-Planning (ERPs) and security platforms can benefit from the enhanced data value exploitation and themselves can also be provided “as-a-service” (for example, manufacturing management-as-a-service).

Lower adoption costs, greater flexibility, higher value

Servitization supports new revenue streams as it also empowers per-mile or plafond billing, flat rates or “per call” billing. This lowers the adoption costs, decreases risks both for producers and consumers and grants higher flexibility as well as scalability. This means that organizations become more capable and efficient of reacting to changes in markets.

Enhanced security also empowers service-based paradigms, as they rely on more frequent exchanges of data flows between value chain actors. Ensuring security and trust between actors makes the value chain more resilient and capable of delivering value even in the advent of internal or external cyberattacks, as well as protecting intellectual property and business-crucial information. This is especially important to enhance the protection against counterfeiting goods, to strengthen brand and to protect IP-driven competitive advantages.

Higher flexibility also opens the door for customization services (“mass customization”), allowing both industrial suppliers and users to lower production costs while being able to satisfy ever-changing customer requirements. Intelligent servitization based on data exploitation, higher flexibility, enhanced security and trust leverage the value creation in the next-generation industrial organizations, specifically in key sectors of the European industry.

Bringing benefits to European Industry

By focusing on core sectors of the European Industry, the CyberFactory#1 project also aims to build a community of manufacturing companies which can partner up with the project consortium and get involved.  This is an excellent way of strengthening ties, sharing knowledge and raise awareness regarding the benefits of the several developments, including being part of enhanced value chains and considering new approaches to market and value creation.

Authors: João Mourinho, Innovation Manager, Sistrade Software Consulting & Américo Nascimento, Research/Consultant, Sistrade Software Consulting