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1. Executive Summary 
CyberFactory#1 aims at designing, developing, integrating and demonstrating a set of key enabling 
capabilities to foster optimization and resilience of the Factories of the Future (FoF). It will address 
the needs of pilots from Transportation, Automotive, Electronics and Machine manufacturing 
industries around use cases such as collaborative product design, autonomous machine 
reconfiguration, continuous product improvement, distributed manufacturing and real time 
situational awareness. It will also propose preventive and reactive capabilities to address cyber and 
physical threats and safety concerns to FoF. 

In comparison with other Industry 4.0 related projects, the differentiating factors of our approach 
are threefold. First, the system considered is not a simple manufacturing asset, nor a sum of isolated 
assets, but a network of factories, which is considered in a System of Systems (SoS) approach. 
The challenge is to propose novel architectures, technologies and methodologies to optimize the 
level of efficiency and security of this SoS in a context where every step towards digitization exposes 
the manufacturing process to widening cyber-threats. Finally yet importantly, we intend to solve 
more than the technological challenges of Industry 4.0 in this project. Many studies have shown 
that demonstrating technical feasibility would not be enough to get the buy-in from workers, 
managers, entrepreneurs, decision makers and customers about novel manufacturing approaches. 
CyberFactory#1 will therefore embrace technical, economic, human and societal dimensions at 
once. 

A first step is to deliver realistic digital models of FoF and their ecosystem, enabling to perform 
simulation-aided design, testing and validation of optimization and resilience components. A second 
output will be the development of key technology bricks for optimization of the manufacturing cycle, 
enabling real-time sensing and tracking of materials, humans and machines on the shop floor, 
optimization of human / machine collaboration, distributed manufacturing scenarios, data lake 
exploitation for process improvement and data-centric business creation. A third output will be to 
address the need for enhanced resilience of FoF, starting with human / machine access & trust 
management, human / machine behavior watch, robust machine learning and self-healing 
mechanisms. The key capabilities will be demonstrated in realistic environments, reflecting the 
variety of possible new factory types like user-centric plant or learning factories and taking into 
account business model shifts like turning products into services or developing data services on top 
of manufacturing activities. 
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2. Introduction 
The system developed under CyberFactory#1 project largely fall into the category of SoS, which 
have special characteristics that impose several challenges on the architecture design of the 
solution.  Initially the architecture modeling focused strongly on the business and operational level 
while newer approaches tried to include also architectural aspects of the involved systems.  1990’s 
PERA (Purdue Enterprise Reference Architecture1) is an example of the first category, which aims 
at computer-integrated manufacturing. Architectures that are more recent have been created within 
Industry 4.0 initiative, with the models proposed by Platform Industry 4.02 and Industrial Internet 
Consortium (IIC), two of the largest organizations that research on topics related to industry and 
Industrial Internet, respectively, the most mentioned. Other prominent architectures are also ENISA 
Purdue Model, IBM Industry 4.0 and NIST Service-Oriented Architecture. These several reference 
models support the definition of CyberFactory#1 system architecture, defined in this document.  

The CyberFactory #1 project will result in the validation of all 12 key capabilities listed in Figure 1 
through testing and demonstration on a mix of real and simulated factory environments. 

 

Figure 1 - Overview on key capabilities. 

Each capability contributes to one of the 3 main Project outputs: 

- Modeling and simulation of Factory System of Systems: a set of modular capabilities 
enabling to virtually replicate a factory, including machines, humans and its vital environment 
(supply chain, customers) to support decision making for process optimization and resilience. 

- Factory of the Future Optimization: a set of modular capabilities enabling to optimize 
manufacturing and supply chain processes and develop data-centric business models 
generating new revenue streams, starting with improved management of factory shop floor 
through the use of the Industrial Internet of Things (IIoT), enhanced optimization of human and 

                                                      

1 The Purdue enterprise reference architecture. Williams, Theodore J. 1994, Computers in 
Industry. 

2 Plattform Industrie 4.0. Plattform Industrie 4.0. https://www.plattform-
i40.de/PI40/Navigation/EN/Home. [Accessed at March 13, 2020.] 
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robot collaboration, manufacturing load balancing techniques and data lake exploitation 
techniques. 

- Factory of the Future Resilience: a set of modular capabilities enabling to enhance resilience 
of future factories, in particular by implementing permanent trust management techniques for 
physical and logical access control of critical assets, innovative techniques for anomaly / attack 
detection based on behavior analysis, offensive and defensive techniques for manipulation of 
artificial intelligence, and system self-healing mechanisms to ensure business continuity and 
recovery.  

2.1. Purpose and Scope of this Document 
Nowadays, sensors are getter cheaper and more efficient; these are often embedded in machines 
and devices, from a simple smartphone to a wristband. The amount of data generated every single 
day worldwide is astonishing; by 2025, approximately 463 exabytes of data will be created3. At the 
same time, communication speed as well as increased protocols make connectivity cheaper and 
more reliable, where cloud technology and mobile devices provide information any time and any 
place. Such large and fast volumes of data and the need to extract knowledge close-to-real-time 
from them are industrial challenges that must be addressed. Furthermore, the joint usage of 
manufacturing control and data lake analytics through the industrial internet will produce huge 
opportunities in all manufacturing areas. As are new devices becoming more intelligent and 
interconnected, the integration of these in a production line, will offer a new set of possibilities, such 
as: better scheduling and maintenance strategies, a better quality prediction (zero-defect 
manufacturing), more reliable safety management and mechanisms, and any kind of operation 
requiring some “step by step” process (installation, assembly, etc.) can be improved.  Yet a number 
of limitations of state-of-the-art technologies restrain the potential for factory optimization and self-
improvement. 

The goal of this document is to first present state-of-art solutions for several constraints or 
limitations that exist nowadays on the transportation, automotive, electronics and manufacturing 
industries. Secondly, identify limitations on the current technologies or approaches and highlight 
how CyberFactory#1 will contribute with new solutions and approaches that might mitigate or 
eliminate them. Some of the topics discussed (but not limited) are: 

 Real time situational awareness, asset location and tracking. The state-of-the-art indoor 
location technologies for LPWAN consist in having a tag listening to signals emitted by a 
nearby Bluetooth Low Energy (BLE) beacon, report the ID and the received power strength 
of the beacon to a location platform. 

 Manufacturing data lake analytics and services. The data generated by real time situational 
awareness, asset location and tracking systems are going to populate a data lake, a large 
storage repository that holds a vast amount of raw data in its native format, without any 
connection, until it is needed. The goal now is to retrieve knowledge and patterns from 
these huge amounts of data, as the competitiveness and capacity for innovation depends 
on a company ability to manage and use knowledge. Using machine learning techniques, 
and large volumes of data with high quality and purity, several services such as anomaly 

                                                      

3 “How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should 
Read”https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-
day-the-mind-blowing-stats-everyone-should-read/?sh=2034383660ba [Accessed at February 23,  
2021], Forbes. 
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detection (measuring deviations from the normal behavior), condition monitoring in 
continuous processes, and other systems optimizations 4 5 6 have been proposed.  

 A more collaborative human-machine interaction, where skills between humans and 
machines are shared. The current state of the art requires a robotic expert or a trained 
worker to program these cobots using teach-pendants. In the Factories of the Future (FoF), 
the collaborating worker should more intuitively program the cobots that they will be 
interacting with, based on their own preferences and experience to increase productivity 
and efficiency. 

 Collaborative product design and distributed manufacturing. In the FoF, the manufacturing 
process is based on a network of geographically distributed, but connected, factories, 
suppliers, distributors, and end consumers. While digitalization and interlinkage of 
distributed manufacturing systems provide the basis to implement the FoF, these are 
heavily dependent and supported by machine learning algorithms, data lake or big data 
infrastructure and collaborative decision making techniques (highly dependent on a 
productive human-machine interaction), IoT and IioT platforms (highly dependent on cloud 
services) and asset location and tracking systems. 

The CyberFactory#1 challenge is to propose novel architectures, technologies and methodologies 
to optimize the level of efficiency and security of this FoF in a context where every step towards 
digitization exposes the manufacturing process to widening cyber-threats. Using the abroad 
experience and knowledge of both industrial and academic partners, synergies are going to be 
created and established through regular meetings, where experiences are going to be shared. In 
the process business, opportunities are going to be identified, from the different and cross-domains.  

2.2. Deliverable Structure 
The document is divided into five main sections:  

 

- Section 3 is dedicated to the analysis of current technologies and applications concerning 
the real-time and near real-time sensing, tracking & supervision of materials and assets, 
both inside and outside of the factory.  

- Section 4 presents data lake and big data technologies applied to FoF. Furthermore, state-
of-art artificial intelligence algorithms and their applications to Industry 4.0 are presented 
and studied. 

- Section 5 presents learning by demonstration state-of-art algorithms, mainly the limitation 
of the Dynamic Motion Primitives approaches and the propose solutions.  

- Section 6 focus on methodologies aiming to support the management of work-in-progress 
and manufacturing loads on the shop-floor, through a network of factories. 

- Conclusions presents the limitations of the current factory architecture, and the novelty 
and contributions made in CyberFactory#1 project.  

                                                      

4 Lee, Jay, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems architecture for industry 
4.0-based manufacturing systems." Manufacturing Letters 3 (2015): 18-23. 
 
5 Maier, Alexander, Sebastian Schriegel, and Oliver Niggemann. "Big Data and Machine Learning for 
the Smart Factory—Solutions for Condition Monitoring, Diagnosis and Optimization." Industrial Internet 
of Things. Springer International Publishing, 2017. 473-485. 
 
6 Lee, Jay, Hung-An Kao, and Shanhu Yang. "Service innovation and smart analytics for industry 4.0 
and big data environment." Procedia Cirp 16 (2014): 3-8. 
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3. Real time asset sensing and tracking  
The number of data sources on the shop floor has dramatically increased thanks to the fourth 
industrial revolution. Due to successive advancements, developments and innovations in sensor 
and networking technologies, their increased availability, affordability and the spread of industrial 
internet have made it possible to have real time/ near real time visibility into the shop floor assets 
and field operations. Digitized production processes offer controllability and traceability, in contrast 
to the traditional sub-processes, which are executed through human interactions7.  The importance 
of digitization in production is well known and there is no sector in industry that has not recognized 
it yet. Broadly speaking, digitization here means being able to gather all relevant data about 
manufacturing processes / assets and use them to increase efficiency, productivity and control over 
them. According to 2018 Manufacturing Vision Study8, manufacturers have already realized the real 
benefits of data connectivity: increased visibility into the entire manufacturing process; an 
accelerated pace in shipping and receiving; faster identification of points-of-failure; and deeper 
insights into the interworking of their operations. This study shows that the amount of data being 
captured but not connected to any system or staff to reduce from 21% to 11% through 2017 to 2022. 
In a connected plant floor, every physical asset has a digital profile. Manufacturers use these 
profiles to track real-time location, material allocation and condition of assets. The data can also be 
used to improve the overall manufacturing process, eliminate bottlenecks, communicate with 
suppliers and ensure quality. Although only 24% of those surveyed currently have technology-driven 
tracking capabilities in place, it’s something manufacturers know they need. In five years, 63% of 
those surveyed plan to increase their tracking with more than 28% planning to adopt real-time 
monitoring 9. In CyberFactory #1 project, CAP41 focuses on real time or near real time data 
collection from shop floor in the factories of the future. The data might be the position of a moving 
robot, presence of pallet inside a factory, materials in the process or operating machines in 
production lines. The operating machines are usually equipped with sensors to produce (a big 
amount of) data as basis for the use of analytical techniques and methods. Since a lot of 
applications in this area generate benefits by processing data from multiple machines and other 
sources together, it is first necessary to transfer the data over a network to a server to be able to 
apply analytical algorithms. 

In this document, the state-of-the-art for RT or near-RT tracking technologies are examined in two 
chapters. The first one is real time location systems (RTLS) which locates anything such as 
manufacturing assets, people, products and anything that carries a RTLS tag on it inside a 
predetermined area. The second one is the industrial IoT platforms, which provides connectivity to 
shop floor and provides many additional features to users for facilitating production.  

3.1. Real Time Location Systems (RTLS) 
Real Time Locating Systems (RTLS) are wireless systems with the ability to locate the position of 
an item anywhere in a defined space (local/campus, wide area/regional, global) at a point in time 
that is, or is close to, real time. Position is derived by measurements of the physical properties of 

                                                      

7 Kerem Kayabay and others, ‘Big Data for Industry 4.0: A Conceptual Framework’, in 2016 
International Conference on Computational Science and Computational Intelligence, 2016, pp. 
431–34. 

8 “2018 Manufacturing Vision Study… The Road Ahead.” [Online]. Available: 
https://cssi.com/2018/04/20/2018-manufacturing-vision-study-the-road-ahead/. [Accessed at May 

27, 2020]. 

9 ‘2018 Manufacturing Vision Study… The Road Ahead’ <https://cssi.com/2018/04/20/2018-
manufacturing-vision-study-the-road-ahead/> [Accessed at May 27, 2020].‘2018 Manufacturing 
Vision Study. ‘ 
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the radio link 10. With the usage of RTLS systems in industry, companies can minimize production 
slowdowns, identify areas to improve, and provide workers with added safety features by tracking 
manufacturing assets and workers movement in real-time 10. 

3.1.1. Components of a Real Time Asset Tracking System  

Every RTLS system incorporates a combination of hardware and software to create an enclosed 
positioning network. The infrastructure mainly consists of four main elements as shown in Figure 1. 

Tag / Beacon: Small element, which needs to be attached to the target that is being tracked. They 
are miniature devices that are enabled with location technology. Depending on the tag’s 
communication method with other parts of the RTLS, they are categorized as passive, semipassive 
or active. 

 Passive tags are typically passive radio frequency identification (RFID) tags. The reader 
(interrogator) sends a radio signal that is received by the passive tags present in the RF 
field of the interrogator. Tags receive the signal via their antennas and then respond by 
transmitting their stored data. Passive RFID tags have no battery and obtain the operational 
power to transmit data from the RF field emitted by a corresponding interrogator11.  

 Semipassive tags (or battery assisted passive tags) are very similar to passive tags. They 
do not initiate any communication, need to be in the RF field of the interrogator to be read, 
and send data to the interrogator using the same backscatter technique as passive tags. 

                                                      

10 2014 International Organization for Standardization, ‘ISO/IEC 24730-1:2014 Information 
Technology — Real-Time Locating Systems (RTLS) — Part 1: Application Programming Interface 
(API)’, 2014.2014 International Organization for Standardization, ‘ISO/IEC 24730-1:2014 
Information Technology — Real-Time Locating Systems (RTLS) — Part 1: Application 
Programming Interface (API)’, 2014.2014 International Organization for Standardization, ‘ISO/IEC 

24730-1:2014 Information Technology — Real-Time Locating Systems (RTLS) — Part 1: 
Application . 

11 Rahul Bhattacharyya and Pavel Nikitin, ‘Guest Editorial: Special Issue on IEEE RFID 2019 
Conference’, IEEE Journal of Radio Frequency Identification, 4.1 (2020), 1–2 
<https://doi.org/10.1109/jrfid.2020.2973562>. 

Figure 1  Figure 2 - Components of an RTLS system (extracted from16). 
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However, semipassive tags have a small battery12. The battery’s main purpose is to either 
monitor environmental conditions or to offer greater range and reliability than passive tags. 
Note that the battery on semipassive tags is not used to generate RF energy. 

 Active tags contain an onboard radio (transmitter or transceiver) and are typically powered by 
an internal battery13. Because they have onboard radio, they usually have a long range and can 
communicate without being prompted. For these reasons, these tags can be located in real 
time, say every second or any frequency needed by the application. However, the battery life 
becomes an important concern with increasing communication. 

 Beacons are small always-on transmitters, which can use Wi-Fi, Bluetooth Low Energy 
(BLE), SubGHz NB-IoT, or other technology to broadcast signals to nearby portable 
devices, mainly BLE. They can be considered as a light house which repeatedly transmits 
a single signal that other devices can see14. The beacon sensors usually transmit data, but 
do not receive them. A device like a smartphone can see a beacon once it is in the device’s 
range, and do what it is programmed to do when it sees the beacon.  

Antenna / anchor: They are devices within an RTLS that typically have a known position and detect 
the location of tags. Location sensors locate tags by using a physical parameter, or a measurement, 
that exists between the sensors and the tags. The physical parameter can be something as simple as 
visibility of the tag to anchor or it can be more complex, such as measuring the time a signal takes to 
travel from the tag to the sensor. The number of location sensors needed in a facility usually depends 
on the technology, the application, and the desired accuracy. For example, if you are implementing an 
RTLS for recording and monitor where a production asset is, you might need location sensors covering 
all the facility. In another example, if you are trying to implement an RTLS to monitor is an asset is in 
the building or not, you just need to locate an anchor at the gates. 

Central Server: It communicates with anchors and manages the antennas, calculates the locations 
(distance and position) of the tags, and makes those data available to be exploited to application 
software. It contains location engine that determines the location of the tags and the middleware, 
which resides among the pure RTLS technology components and the business applications as seen 

                                                      

12 Kasyap Suresh and others, ‘A Comparative Survey on Silicon Based and Surface Acoustic 

Wave (SAW)-Based RFID Tags: Potentials, Challenges, and Future Directions’, IEEE Access, 8 
(2020), 91624–47 <https://doi.org/10.1109/ACCESS.2020.2976533>. 

13 Arvind Lakshmanan and Vivek Maik, ‘Active RFID Tag with Better Tracking Range for 
Automotive Applications’, 2020, 165–69 <https://doi.org/10.1109/irce.2019.00040>. 

14 Akshay Jayraj Suvarna, Avaneesh Pratap Singh, and H. K. Shashikala, ‘Beacon Technology’, 
International Journal of Computer Science and Mobile Computing, 8.6 (2019), 100–105. 
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in Figure 2. In other words, the middleware resides among pure RTLS technology components and 
business applications. 

Location estimation consist of ranging techniques to estimate distance between the tag and anchor, 
and position estimation techniques that derive the position of the tag.  

Ranging techniques estimate distance, or range (usually in terms of feet or meters), between the tag 
and the anchor. The physical variables that are commonly used to determine the estimated distance are 
listed below 16: 

1. Time of Arrival (TOA): The time it takes a signal to travel from the location sensors to the tag or vice 
versa. This time to travel, also known as propagation delay, can be converted into distance between 
the tag and the location sensor by multiplying it by the signal’s propagation speed.  

2. Angle of Arrival (AOA): The angle between the propagation direction of signal and some reference 
direction, which is known as orientation. Here, direction sensitive antennas are used at anchor points 
to determine the direction and angle of the signal coming from a tag. Then, the tag position is 
estimated by finding the intersection of different signal propagation paths. 

3. Time Distance of Arrival (TDOA): Similar to TOA but instead of exact TOA measurement TDOA 
measures the difference in transmission times between signals received from each of the 
transmitters to a tag or vice versa.  

4. Time of flight (TOF): Uses measured elapsed time for a transmission between a tag and a location 
sensor based on the estimated propagation speed of a typical signal.  

5. Round trip time (RTT): Uses the total time for a signal to start from the anchor and the 
acknowledgment to be received back. 

6. Received signal strength indicator (RSSI): A measurement of the power present in a received radio 
signal. As a signal leaves its source, it attenuates, meaning that the power of the signal drops. The 
drop is logarithmic, and the signal attenuation in open space, as well as different medium, is well 
defined. Because the power levels at the start of transmission of a signal are known, RSSI can be 
used to estimate the distance the signal has traveled. 

In general, no single variable can be used to provide accurate ranging estimation under all 
circumstances. Each of them has its own advantages and limitations in terms of location accuracy and 
generally, a combination of some of them is used. 

Figure 2:  Figure 3 - General RTLS structure (extracted from16). 
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Position estimation techniques derive the position of the tag. This includes making use of estimation 
algorithms on all the estimated tag distances from the location sensors and the actual position of all the 
anchors to the estimated tag position. Commonly used algorithms are15: 

1. Trilateration: A technique in which you can estimate the position of something if you know the 
distance to three different locations. 

2. Triangulation: A technique in which you can estimate the position of something if you know the line 
angle between that something and the three different locations with respect to a common reference 
line, such as a line pointing up.  

3. Nearest neighbor: Simply neighbor relationships are used to estimate a position. A neighbor 
relationship is based on any of the ranging techniques, such as RSSI.  

Many technologies are available that enable an RTLS with one of the variables and the algorithms 
described in previous paragraphs. Bluetooth, RFID, ultra wideband (UWB), Wi-Fi, ZigBee and etc are 
among those technologies which will be examined in detail later on in this document. Each of these 
positioning technologies has certain level of accuracy and a service area where it performs better. Then, 
you can’t rely on any one technology to provide accurate location information in all environments. Each 
technology has its pros and cons as summarized in following chapters.  

Application software16: The computer software interacts with the RTLS middleware to solve the 
problems challenging end users, such as enabling users to achieve the tasks that they wish to 
perform or solves problems for another application program. The application provides the end user 
value, the real time actionable business intelligence that is accessible to the relevant systems and 
people. It involves the establishment of alerts, alarms, actions, decisions, audit trails, and 
documentation. 

3.1.2. Positioning Technologies 

The asset tracking in production aims to control parts, elements or tools that take action in the 
production line, as well as the process itself, its disruptions and the data it produces. Nevertheless, 
the components of an RTLS and its capabilities may depend on the technology used for its 
implementation. In this document, focus is on the indoor positioning technologies. Therefore, 
previously mentioned technologies such as such as, RFID, BLE and UWB and their components 
will be reviewed in following parts:  

Bluetooth Low Energy (BLE) Technology: It is a subset of the Bluetooth v4.0 standard (or 
emerging standards such as Bluetooth 5)17. It has a completely new protocol stack in reference to 
the OSI layer and oriented to simple connections in very low power applications. The technology is 
primarily used for mapping and location services using the RSSI (received signal strength indicator) 
estimate18. The broadcasted beacon signals can be captured by smart gadgets, like phones, to call 
ad-hoc actions as shown in Figure 4. 

                                                      

15 Pouria Zand and others, ‘A High-Accuracy Concurrent Phase-Based Ranging for Large-Scale 
Dense BLE Network’, IEEE International Symposium on Personal, Indoor and Mobile Radio 
Communications, PIMRC, 2019-Septe (2019). 

16 Ajay Malik, RTLS for Dummies (NJ: Wiley Publishing, 2009). 

17 “BLE.” [Online]. Available: https://www.elt.es/en/ble. [Accessed at April 30, 2020]. 

18 “Mark up the world using beacons.” [Online]. Available: 
https://developers.google.com/beacons. [Accessed at April 30, 2020]. 
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Figure 4 - BLE beacons (extracted from19). 

Using a Bluetooth connection, the technology is cheaper than alternatives and easier to use and 
support. The main components of a RTLS based on BLE technology are the beacons and gateways:  

BLE Beacons: Beacons are small battery powered devices that emit a BLE signal that is picked up 
by the BLE GW. The BLE beacon hardware consists of a microcontroller with a Bluetooth LE radio 
chip and a battery. New radio chips are optimized for Bluetooth LE, whereas older versions were 
designed for Bluetooth Classic, which had higher power consumption. Coin cell batteries are the 
most popular choice for most beacons. These batteries are dense Lithium Ion cells and provide up-
to 1,000 mAh of stored power in a very small form factor. Commonly available coin cell sizes are 
240 mAh (CR2032, small size), 620 mAh (CR2450, medium size) and 1,000 mAh (CR2477, large 
size). Some beacons also use Alkaline AA batteries. A typical AA battery provides around 2,000 
mAh power but at a significantly larger size than coin cell batteries. Lastly, some beacons are 
externally powered. They can be installed in a wall outlet or a USB outlet. These beacons do not 
need battery replacement and can be economical in certain situations. However, availability of a 
power outlet, without running new wiring, at exact spots where a beacon is required may not always 
be feasible. 

Every beacon has a specific firmware, which is the logic (programmed code) that enables the 
beacon hardware to operate. The firmware can control several characteristics that impact the 
battery life:  

• Transmit Power (tx power): Beacon devices transmit a signal with a fixed base power, 
known as the tx power. As the signal travels in air, the received signal strength decreases 
with distance from the beacon. Higher tx power means, the signal can travel longer 
distances. Lower tx power means, less battery consumption but also smaller range.  

• Advertising Interval: It is the interval that a beacon emits a signal. An interval of 100ms 
means the signal is emitted every 100 milliseconds (or 10 times in a single second). A higher 
interval of 500 ms means the signal is emitted only twice per second, which means less 
battery drain for the beacon. As the advertising interval increases, the battery life of the 
beacon also increases, but the responsiveness of the phone decreases. There is no optimal 
choice of advertising intervals, and applications needing low latency should choose lower 
advertising intervals, and those needing higher battery life should increase the advertising 
interval.  

Each beacon provides its own way of configuring the hardware and associated parameters (Tx 
power and advertising interval). Some beacons provide their own proprietary app to configure the 
beacons, normally to be installed in a smartphone with BLE interface available. Other beacons 
provide open interface via any GATT client. The main advantage of beacons supporting GATT 
method is that hundreds of beacons can be configured at once. Tx power and maximum coverage 

                                                      

19 ‘Apple Inc. (AAPL) iBeacon Technology Revolutionizes A New Vision For The Retail Industry’ 
[online]. Available: https://dazeinfo.com/2014/03/25/apple-inc-aapl-ibeacon-technology-retail-
industry-video/ 
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distance of beacon, in direct line of sight, is shown Figure 5. The range decreases if there are any 
obstacles between the beacon and the receiver. 

 

 

Figure 5 - Tx power and maximum coverage distance of a beacon (extracted from20). 

BLE Gateways: Normally BLE gateways are devices with two wireless interfaces, BLE and WiFi, 
that receives data via BLE and sends them via WiFi to the central server for further processing. In 
some cases the BLE can have additional intelligence so that it can process somehow the received 
signal, not just forwarding it. For instance, the GW can calculate the distance from the obtained 
RSSI from the beacon, or even smooth somehow the received RSSI so that to improve its quality. 
They can also provide additional functionalities such as device monitoring and security. 

We can define technology by its defined OSI layers: 

• Physical Layer: BLE technology is capable of using up to 40 2MHz channels in the 2.4 GHz 
ISM band. 

• Link Layer: Layer that manages the connection (HCI Protocol) and the definition of roles 
(Advertiser, Scanner, Master and Slave) in communication. 

• L2CAP Layer (Logic Link Control and Adaptation Protocol): Message format and 
encapsulation. MTU (27 Bytes). 

• GAP & GATT Layers: Visibility and Interaction between two devices. GATT is based on the 
Attribute Protocol (ATT). 
 

Radio Frequency Identification (RFID) Technology: It is the wireless non-contact technology use 
of radio frequency waves to transfer data, whereby digital data encoded in RFID tags are captured 
by a reader via radio waves. Tagging items with RFID tags allows users to automatically and 
uniquely identify and track inventory and assets. At a simple level, RFID systems consist of three 
components: an RFID tag, an RFID reader and an antenna. RFID readers are responsible for 
generating the waves that are emitted by the antennas towards the tags, and at the same time they 
also receive and decode the signal emitted by the tags that arrives through the antenna to the 
reader. The antenna and reader can be coupled into the same device or they can be two separate 
devices connected through a coaxial cable. This is why they are normally described together. The 
first option has the advantage of avoiding signal loss through the connection cable but, on the 
contrary, is more expensive as it normally implies to have always one reader per antenna. On the 
other hand, the second option has the advantage that multiple antennas can be added to the same 
reader (that is the most expensive device), but the signal loss through the coaxial cable must be 
considered and therefore lower power is emitted by the antenna and scope of the coverage is lower. 

Among several specifications, the three most important to take into account when selecting a RFID 
reader and antenna are frequency, polarization and gain. 

 Frequency: RFID operates at several frequencies bands 21: 

                                                      

20 ‘The Hitchhikers Guide to iBeacon Hardware: A Comprehensive Report by Aislelabs’ [online] 
available: https://www.aislelabs.com/reports/beacon-guide-2014/ 

21 Angell, I., Kietzmann, J. (2006). "RFID and the end of cash?"(PDF). Communications of the 
ACM. 49 (12): 90–96.   
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o Low Frequency (LF): This band covers 30 KHz to 300 KHz. Typically LF RFID 
systems operate at 125 KHz, although there are some that operate at 134 KHz. This 
frequency band provides a short read range of 10 cm, and has slower read speed 
than the higher frequencies, but is not very sensitive to radio wave interference. LF 
RFID applications include access control and livestock tracking. 

o High Frequency (HF): This band ranges from 3 to 30 MHz. Most HF RFID systems 
operate at 13.56 MHz with read ranges between 10 cm and 1 m. HF systems 
experience moderate sensitivity to interference. HF RFID is commonly used for 
ticketing, payment, and data transfer applications. 

o Ultra High Frequency (UHF): The UHF frequency band covers the range from 300 
MHz to 3 GHz. Regarding UHF (Ultra High Frequency) RFID antennas, the most 
used frequencies are 902-928 MHz (US/FCC), 865-868 (EU/ETSI), 860-960 
(Global). In Europe, there are two used bands, which are the low-band (865,6-867,6 
MHz) and the high-band (915-921 MHz). Moreover, there is another important 
frequency, which is 433 MHz, that is widely used form large range vehicle 
identification, people/object control and security applications. The read range of 
passive UHF systems can be as long as 12 m, and UHF RFID has a faster data 
transfer rate than LF or HF. UHF RFID is the most sensitive to interference, but 
many UHF product manufacturers have found ways of designing tags, antennas, 
and readers to keep performance high even in difficult environments. Passive UHF 
tags are easier and cheaper to manufacture than LF and HF tags.  

The selected frequency for an application depends on their requirements. The higher frequency, 
the higher the distance and the reading speed, but also the cost. When selecting an RFID 
antenna and reader, it must be assured that the selected frequency range is suitable for the 
region / country where it will be deployed.  

 Gain: A higher gain implies a thinner electromagnetic beam. Therefore, a higher gain 
creates a narrower but longer coverage area, achieving a larger reading distance. This is, 
the antenna will be more directive. The ideal gain and beam width will depend on the 
application requirements. For example, using antennas of 8,5-10 dbi or higher will allow to 
emit a higher power and to obtain a higher reading rate. 

 Polarization: Most of the antennas have circular or linear polarization. If all the tags will be 
read in the same orientation and height in a specific application, the linear polarization fits 
better. On the other hand circular polarization antennas have the advantage of fitting better 
on applications where is difficult to foresee the orientation or location of the tag. Therefore, 
the use of circular polarized antennas is wider due to this flexibility. 

Taking all these aspects into consideration, the most suitable RFID deployment for a RTLS solution 
in an industrial environment should use UHF antennas and readers for European standards 865-
868 MHz (EU/ETSI). It should also be a directional antenna with high gain (8,5 – 10 dbi or higher) 
for achieving larger reading distance. In addition, with circular polarization, for being independent 
of the tag orientation. Some of the aspects to consider when selecting RFID tags are the type (label, 
protected, etc.), operation frequency (LF, HF, UHF), environment (metal, indoor, outdoor, etc.), 
fastening method (adhesive, pinned, etc.), reading distance and rate, size and cost, among others. 

 Operation Frequency: The tag frequency selection depends on aspects such as the required 
reading distance, material where the tag will be located and the reading rate. For example, 
if large distances are required (higher that 1-3 meters) UHF tags are required. When 
working with UHF tags, devices that are compliant with the well-known and widely used 
Gen2 standard are recommended. 

 Tag type: The tag type selection depends on the reading distance, cost, size, weight and 
application type. In short, there are passive and active tags. Passive ones use tags with no 
internal power source and instead are powered by the electromagnetic energy transmitted 
from an RFID reader. The lower price point per tag makes employing passive RFID systems 
economical for many industries. Active tags are battery-powered that continuously 
broadcast their own signal. Active tags provide a much longer read range than passive tags, 
but they are also much more expensive. 
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 Environment: Regarding environment, it has to be considered that metal environments 
provoke signal to bounce and water environments absorb energy. There are solutions to 
the challenge of using RFID on metal and water, but specially designed tags are more 
expensive than generic tags that can be used on RF-friendly objects. For example, metal 
objects interfere with and disturb the tag functioning, especially on LF and HF. In this case, 
UHF tags are recommended and additionally they require a little separation between the 
tag and the metal surface. 

 Orientation: The tag orientation regarding the antenna also affects the own tag performance. 
The best orientation is always when the tag and the antenna are in the parallel plane to 
each other. Like this, the tag can receive the whole energy from the antenna. While the tag 
turns, it presents a smaller effective area for the electromagnetic waves and, therefore, 
takes less amount of energy. The reading distance of the tag reduces as the obtained 
energy is smaller. This is why a small size tag will be readable to a shorter distance that a 
bigger tag. 

Considering all these aspects, the most suitable RFID tag for a RTLS solution in an industrial 
environment should use UHF tags for higher reading distance and metal specific tags (taking into 
account that these ones cannot be passive or small size). 

Ultra-Wide Band Technology: Indoor positioning with Ultra-Wide Band (UWB) has some 
significant advantages: The accuracy is 10-30 cm; latency time is very low (position request up to 
100 times/second); height differences can be measured accurately. Anyway, the technique is a 
special solution which requires appropriate components that will summarized in this section.  The 
base of the system is a set of anchors that are positioned in the area to be monitored, used as 
positioning reference. The other part of the system is one or multiple tags that are fixed to the object 
that are to be tracked. Both devices, anchor and tag, have very similar HW, they are usually 
equipped with a UWB module and power supply. In addition, they are then provisioned with tag or 
anchor firmware, depending on the role. For the UWB anchors, they are also provided with an 
additional interface (Ethernet, WiFi, LoRa, 3G, etc) for data transmission and configuration. Anchor 
is a referential device with a known position. In a RTLS context, anchors are electronic devices that 
detect UWB pulses emitted by UWB Tags and forward them to the location server for calculating 
tag positions. To cover the area with an indoor tracking system, a set of anchors needs to be 
installed above the area to create the location infrastructure, where tags are being located. An UWB 
RTLS Platform is fully scalable, allowing the unlimited expansion of monitored area just by adding 
extra anchors to the network. In a RTLS context, tags are small electronic devices that are attached 
to objects that need to be tracked. The tags send out blinks that are received by anchors and 
forwarded to the location server for calculating the tags’ position. RTLS Tags are used for asset 
tracking, vehicle tracking, material flow analysis and employee location tracking for safety reasons. 

Wi-Fi positioning systems (WPS): In WPS, multiple wireless access points measure the relative 
signal strength of assets to approximate their position inside a facility. Factories usually have a Wi-
Fi network deployed and easy to make deployment of the system. GPS has a similar function on 
works outdoors.  

ZigBee: It is another wireless standard operating in an unlicensed segment of the broadcast 
spectrum. Its range is slightly greater than Bluetooth, but this comes at the cost of some reliability 
problems. A wireless connectivity module implementing ZigBee standard is shown in Figure 6. 

Advantages: 

• Simple Technology—ZigBee is an older, relatively simple wireless technology that’s easy 
to implement in any environment. 

• Cost for tags and receivers are durable and inexpensive. 
However, the signals can easily degrade in ‘complicated’ environments and have interferences. 
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Figure 6 - Example of Zigbee module (extracted from22). 

Sensor and Micro-controllers: In commercial market, we have a multitude of sensors and 
communication elements for IoT. One example is NodeMCU which is the development board based 
on the ESP8266. It incorporates: 

• a low-consumption 32-bit MCU (Tensilica L106) 
• 2.4 GHz WiFi module 
• RAM of about 50 kB 
• 1 analog 10-bit input (ADC) 
• 17 GPIO input and output pins (general purpose) 

Outdoor Tracking Systems, possibilities offered by 5G technology: Location technologies will 
only get better with the advent of the new wireless standards within 5G. Location aware devices 
and components will boost up capabilities of industry 4.0, medicine, smart city applications. High 
positioning accuracy will be achieved with the help of large number of sensors, high bandwidth, low 
latency and new frequency ranges. Drones, AGVs, further location aware devices maybe combined 
with AR technologies to enrich logistics and asset tracking applications. Positioning accuracy in 
cellular networks is expected to increase from 20 meters to a few decimeters in upcoming new 
releases of 5G standards23. 

3.1.3. Data Collection 

In this section, a short introduction to data collection and big data will be given. Then, data collection 
from RTLS technologies and other data sources will be described. Data collection is the process of 
gathering and measuring information on variables of interest, in an established systematic fashion 
that enables one to answer stated research questions, test hypotheses, and evaluate outcomes.  

Big data can be defined as data sets or combinations of data sets whose size (weight or volume), 
complexity (variability) and growth rate (speed and scalability) make it difficult to capture, manage, 
process or analyze them using conventional technologies and tools, as conventional statistical and 
relational databases or visualization packages, within the time necessary to be useful. The data set 
in normal use of technology generally varies from 50 terabytes to several petabytes.  

The different types of data are also: 

I. Types of unstructured data: documents, logs, social media videos, audios, etc. 
II. Semi-structured data types: software, spreadsheets, reports. 

III. Structured data types. 
 

RTLS, as a two-way wireless communication system to share real time location data, is a reliable 
and efficient real-time big data source to establish communication between tags and readers and 
provides frequent updates. 

                                                      

22 ‘Digi XBee Zigbee Datasheet’[Online]. Available: https://www.digi.com/resources/library/data-
sheets/ds_xbee_zigbee [Accessed at April 30, 2020] 
23 “Expected Positioning Accuracy of 5G.” [Online]. Available: 
https://www.iis.fraunhofer.de/en/ff/lv/lok/5g/accuracy.html [Accessed at April 30, 2020]. 
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Nevertheless, data collection in a RTLS solution may depend on the technology used for its 
implementation. Therefore, data acquisition approaches of previously mentioned technologies will 
be summarized in this section. The central server of an RTLS system plays a crucial role in data 
collection. It is responsible for calculating the asset location based on the information received from 
the antennas and the proposed technologies. 

Data Collection in RFID: RFID belongs to a group of technologies referred to as Automatic 
Identification and Data Capture (AIDC). AIDC methods automatically identify objects, collect data 
about them, and enter those data directly into computer systems with little or no human intervention. 
RFID tags contain an integrated circuit and an antenna, which are used to transmit data to the RFID 
reader. The reader then converts the radio waves to a more usable form of data. Information 
collected from the tags is then transferred through a communications interface to a host computer 
system, where the data can be stored in a database and further analyzed. Information collected 
from tags and stored in the repository, is normally a tag ID detected by an antenna and a timestamp. 
Thanks to this information, if each tag ID is linked to a monitored asset and each antenna is linked 
to a monitored area, we can establish that an asset is or is not in a certain area. Due to this fact, 
RFID based solutions are mostly used for identification purposes than for accurate location tracking, 
but depending on the requirements of the use case it can provide useful location information. 

Data Collection in BLE: BLE beacons emit a BLE signal. The signal is picked up by the BLE 
gateway, and often transmitted to a central server. This central server processes the received signal 
strength indicator (RSSI) from each gateway to a same beacon, and based on this data it can 
estimate the distance from each gateway to the beacon. Then, thanks to trilateration techniques, at 
least the information from three gateways is needed, the beacon location is estimated. Due to the 
RSSI instability due to equipment and environment, the obtained location is not highly accurate, 
and therefore, BLE based solutions are more suitable for proximity evaluation. 

Data Collection in UWB: UWB measures that Time Of Flight (ToF), time that the light signal takes 
to cover the distance between the anchor and the tag. It is recommended to have line of sight 
between the tag and the anchor. UWB anchors transmit a very wide pulse over a GHz of spectrum. 
The anchors then listen for chirps from the UWB tags. These tags have a spark-gap-style exciter 
that generates a little pulse within them, which creates a short, coded, very wide, nearly 
instantaneous burst. Each anchor then reports very accurate time measurements from the tag back 
to a central server, which processes and combines the received ranging results of the anchors to 
each tag and calculates the tag location. Nevertheless, there are several modes of functioning Tag 
– Anchor, such as: 

 Two Way Ranging (TWR), a technique adopted for determining the distance between two 
devices. One device sends a packet to the second one, which responds immediately. Then, 
the first device is able to determine the time elapsed between the time instants related to 
the first transmission and the response reception (the so-called round-trip time). Since the 
speed of light is known, the distance can be directly estimated from the round-trip time 
measure. By combining several TWR measurements between anchors and the tag, a tag 
can be localized. 

 Time Difference of Arrival (TdoA), a location technique according to which the tag position 
is estimated by comparing the time delay between the receptions of signals coming from 
different nodes (anchors), as done by GPS receivers with satellites signals. The TDoA 
methodology enables the tracking of an unlimited number of tags within the system and 
thousands of them within a single area for tracking assets, monitoring forklifts or employee 
location tracking. 

Issues with Data Collection: the data collection process and their results are a challenging task 
and involve many issues that must be addressed before the data is collected and used. 

The main issues in the process of data collection and utilization are: 

 The raw collected data may not be in the usable form right away and may require additional 
efforts or changes to make it usable. 

 User privacy issues: Privacy and security data politics. Not all data can be collected and 
processed. Sometimes you have to apply anonymity algorithms to collect the data. 

 The amount of data can cause a system size problem. Data extraction can be extended in 
time by its quantity or by its sampling. 

 Ethical norms about the data: Honesty, Objectivity, Integrity, Non-Discrimination …etc. 



 

State-of-the-Art on FoF Optimization 
Date 03.03.2021 

 

CyberFactory#1  |  www.cyberfactory-1.org 22 

 

 
Monitoring Systems: Monitoring applications are systems for the massive analysis of data. One 
of them is ThingSpeak as shown in Figure 9. ThingSpeak™ is an IoT analytics platform service 
from MathWorks24. It can use any Internet-connected device with ThingSpeak. ThingSpeak provides 
instant visualizations of data posted by your devices or equipment. Execute MATLAB code in 
ThingSpeak, and perform online analysis and processing of the data as it comes in. ThingSpeak 
accelerates the development of proof-of-concept IoT systems, especially those that require 
analytics. 

 

 

Figure 7 - ThingSpeak as an example of monitoring systems (extracted from24). 

Connectivity Protocols: Modern connectivity protocols are very diverse depending on technical 
needs, the system you transmit, and your goal. A plethora of more traditional protocols is in use in 
industrial systems (field bus / wireless). In client server models, clients communicate directly with 
the known server. CoAP, MQTT, OPC, XMPP, AMQP, LwM2M, ZigBee, Bluetooth maybe listed as 
the examples of connectivity protocols. From this diverse set of connectivity protocols, MQTT and 
OPC are investigated further in this section. These protocols have had a separatist nature in their 
functions and mainly OPC is applied to the connectivity of machines in the industrial environment. 
And MQTT is presented as the protocol used for sensor communications in IIoT environments. An 
industrial environment is illustrated in the Figure 10: 

                                                      

24 “ThingSpeak for IoT.” [Online]. Available: 
https://thingspeak.com/pages/commercial_learn_more?EnergyMonitoring. [Accessed at June 12, 
2020]. 
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Figure 8 - OPC (machine) vs. MQTT (sensors) Protocols (extracted from25). 

In which we can see the different technologies that are used: Big Data Analytics, Edge computing, 
MQTT, OPC-UA. The market presents solutions that unite the strengths of both prevailing 
connectivity technologies. The slogan that predominates in these implementations is "OPC UA + 
MQTT = A popular combination for IoT expansion", MQTT - OPC (in the case of the image, we see 
OPC -DA). We can see an architectural scheme in Figure 9. 

 

Figure 9- Architectural scheme joining MQTT – OPC (extracted from20). 

With OPC UA or MQTT communication on the factory floor, it is possible to use a computer, server 
or edge gateway to relay information to IT systems and clouds 26, as it is shown in Figure 12. 

                                                      

25 ‘IoT Communication with MQTT, HiveMQ, and Azure IoT Edge’ [Online], Available: 
https://www.hivemq.com/blog/azure-iot-edge-and-hivemq/ 

26 “Use Anybus CompactCom to connect to IoT protocols.” [Online]. Available: 
https://www.anybus.com/products/embedded-index/embedded-features/opc-ua-mqtt/use-anybus-
compactcom-to-connect-to-iot-protocols. [Accessed at June 10, 2020]. 
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Figure 10 - Example of system (extracted from26). 

Part 14 of the OPC UA Standard, “Publish-Subscribe” or “PubSub” was released, helping to 
encourage further interaction between OPC UA and communications protocols such as MQTT.  
According to the OPC Foundation, “PubSub enables the use of OPC UA directly over the Internet 
by utilizing popular data transports like MQTT (Message Queuing Telemetry Transport) and AMQP 
(Advanced Message Queuing Protocol) while retaining its key OPC UA end-to-end security and 
standardized data modelling advantages”. The standard has also helped further communication 
abilities within IoT devices, such as gateways. IoT gateways provide a bridge between an on-
premises communications network and a cloud-based communications network. Sometimes 
referred to as “Edge devices”, IoT gateways provide data connectivity to sensors and end-devices, 
completely on-premises. Such systems are sometimes also called “intelligent gateways,” due to the 
increase in processing power, memory and storage, as well as intelligent “middleware” 
encompassing key features such as protocol translators, data buffering, edge analytics, on-premise 
visualization and cloud enablement, which support emerging communication protocols including 
MQTT and AMQP for publishing data to the cloud. In the marketplace, companies as powerful as 
Intel have developed their own gateways. Intel's Internet of Things gateways offer businesses a key 
ingredient in enabling connectivity from legacy industrial devices and other systems to the Internet 
of Things. It integrates network technologies and protocols, embedded control, business security, 
and easy management of what specific application software you can run. Another design of 
architecture that combines the best of both protocols is given in Figure 11. 

 

Figure 11 - Another Architecture combining MQTT – OPC (extracted from26). 

Integrating OPC UA with AZURE: Microsoft is proposing an architecture where factory operation 
can be made more efficient and productive using OPC UA with Microsoft Azure tools like Time 
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Series Insights (TSI)27. This architecture consists of a series of modular components, which can 
include any or all of the following: 

 An OPC UA Publisher Module to subscribe to OPC UA servers in your factory. As data is 
published, the Publisher module translates those OPC UA Attribute values to JSON and 
delivers them to the IoT hub. 

 The IoT hub retains the data from the OPC UA servers and makes it available to the 
collection of data management, analytics and web services in Azure. 

 Time Series Insights – In one application of the Connected Factory, IoT hub is an event 
source for the Time Series Insights service (TSI). Time Series Insights is an Azure service 
that provides analytics, visualization and data storage. 

 In other applications of the connected factory, an OPC UA Client in the Cloud delivers 
commands to the OPC UA servers in the factory just as a local one would. 

 An OPC UA Proxy Module to tunnel those OPC UA command and control messages from 
the cloud OPC UA Client back to the OPC UA servers using UA authorization and 
encryption. 
 

Sensors: There are many commercial IoT sensors/systems with different technologies for data 
collection. For example Beacons, ESP32, ESP8266 and Raspberry PI. In Figure 12, we can see an 
example IoT topology and indoor positioning with several ESP32 microprocessors with temperature 
and humidity sensors as clients that connect to a referenced server with a Raspberry PI. It is 
possible to do a small demo application to use ESP32 modules as anchors/stations to do indoor 
positioning of iBeacon tags (tagged people, dogs, cats and objects) with trilateration. ESP32 
modules will work as iBeacon monitoring stations, reporting all found Bluetooth beacons to the 
MQTT topic, with their MAC address and RSSI. 

 

Figure 12  - MQTT sensors topology (extracted from28). 

3.2. Industrial IoT Platforms 
An important data source of industrial sites are integrated sensors to production machines and 
lines, processes and enterprise systems as well. An Industrial IoT platform is a rapidly growing 
segment of IoT technology comprising a collection of functions for edge device management, IoT 
data analytics, modern sensor technologies and connectivity solutions that enhance industrial 
equipment and industrial operations with remote monitoring, predictive maintenance, and extensive 
device data analytics. Thus, this section in part overlaps with section 4 Data lake exploitation, 

                                                      

27 “How Microsoft Is Leveraging OPC UA to Get an Irreplaceable Position in Your Factory.” 
[Online]. Available: https://www.automation.com/en-us/articles/2017/how-microsoft-is-leveraging-
opc-ua-to-get-an-irrep. [Accessed at June 10, 2020]. 

28 ‘Raspberry Pi ESP32 MicroPython MQTT DHT22 Tutorial’ [Online]. Available: 
https://www.rototron.info/raspberry-pi-esp32-micropython-mqtt-dht22-tutorial/ 
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especially considering real time and non-real time data analytic frameworks.  In other words, 
common IIoT use cases in manufacturing include factory automation for operational efficiency; 
location tracking for locating tools, parts, and inventory; and predictive maintenance for maximizing 
uptime and disaster tolerance29. On a broader scale, an Industrial IoT platform is a key enabler 
of Industry 4.0, otherwise known as smart factory, which combines modern cloud computing, IIoT 
and AI to create intelligent, self-optimizing industrial equipment and production facilities. 

Smart manufacturing in Industry 4.0 means not only developing and deploying new systems, but 
making legacy ones flexible and easily reconfigurable. In order to do that, one of the main objective 
of Industry 4.0 is connecting these systems into the same network, where all devices i.e. controllers, 
sensor and other peripherals are IP endpoints, which are addressable and accessible on the 
network directly. That is what called IoT Automation30.  

• Figure 13 shows the reference IIRA (Industrial Internet Reference Architecture) architecture 
for industrial IoT systems. Five functional domains of a typical IIoT system: control, 
operations, information, application, business domains and the flows between those 
domains are demonstrated. Green arrows show the data/information flows, grey/white 
arrows show decision flows and red arrows show command/request flows31. 

• Figure 14 shows the architecture that is used in Intel’s smart factories. Intel uses gateways 
and sensors in its factories to collect and analyze that data is used to improve automation, 
such as defining the control limits that produce high-quality results within a process. Data 
from edge computing and IoT is extracted for real-time analysis on the factory floor as well 
as big data analysis in off-line databases32. 

 

Figure 13 - Reference IIRA architecture for industrial IoT systems (extracted from31). 

                                                      

29 ‘IoT Data Management: The Rise of Industrial IoT and Machine Learning’ 

<https://www.informatica.com/hk/resources/articles/iot-data-management-and-industrial-iot.html> 
[accessed 6 June 2020]. 

30 J. Delsing, IOT Automation. Arrowhead Framework. CRC Press, 2017. 

31 Industrial Internet Consortium, The Industrial Internet of Things Volume G1 : Reference 
Architecture, Industrial Internet Consortium White Paper, 2019, VERSION 1. 

32 Steve Chadwick and Steven J. Meyer, Using Big Data in Manufacturing at Intel ’ s Smart 
Factories, 2016. 
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Figure 14 - Data collection and analysis at Intel’s smart factories (extracted from32). 

Different types of data sources in IIoT applications are29: 

1. Industrial control systems: IoT makes it possible to leverage the data which is already available 
in SCADA system or historian. 

2. Business applications: Data silos are still very common in industrial organizations. Data from 
applications like your CRM, ERP or EAM can provide context that goes beyond what is wrong 
with a machine. 

3. Wearable: New wearables promise to make difficult and often dangerous jobs safer and easier. 

4. Sensors and devices: Advances in sensor technology have made streaming real-time data 
easier than ever. Temperature, flow, pressure and humidity sensors have become big sources 
of industrial IoT data. 

5. Media: Smartphones have made it possible to get real-time access to photos, videos and audio 
from the field. However, in industrial cases, we can go beyond using smartphones to upload a 
picture of a broken machine. One way to use media as a data source in oil and gas is to stream 
real-time infrared images when inspecting flare stacks. Flare systems need to be inspected 
regularly for fouling and corrosion. 

6. Location: Location data could come from mobile devices, location beacons, GPS systems. The 
location technologies (RTLS systems) are described in previous sections in detail. 

A successful IOT solution consists of a combination of the following 6 capabilities: 

• Connect to IoT endpoints 

• Manage IoT endpoints/identities 

• Ingest and process IoT data 

• Visualize and analyze IoT data 

• Build IoT applications 

• Integrate IoT data into existing applications 

Commercial IIoT platforms: 

Siemens Mindsphere is the cloud-based IoT open operating system from Siemens. It connects 
products, plants, systems, and machines, enables to harness the wealth of the data with advanced 
analytics. In addition, it gives access to a growing number of apps and a dynamic development 
ecosystem. MindSphere serves software as a service for users33: 

 Connect assets and upload data to the cloud 

 Collect, monitor, and analyze data in real time 

                                                      

33 ‘MindSphere’ <https://siemens.mindsphere.io/en> [Accessed at June 11, 2020]. 
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 Gain insights that improve efficiency and profitability 

 Add apps that increase the business value of your data 

PTC Thingworx is a complete, end-to-end technology platform designed for the industrial Internet of 
Things (IIoT). It delivers tools and technologies that empower businesses to rapidly develop and 
deploy powerful applications and augmented reality (AR) experiences34. IBM Watson IoT is a 
complete solution form data collection from shop floor to unlock the power of data with AI and IoT 
to innovate asset management, optimize real estate and facilities, improve software and systems 
engineering, and advance digital transformation of factories35. Microsoft Azure is a service which 
builds new industry solutions, improve productivity, and reduce waste —and quickly process 
massive quantities of data from all kinds of IoT devices using AI and machine learning36. SAP 
Leonardo is a collection of tools and applications built on SAP Cloud Platform that can be used to 
create an administrative environment for managing and monitoring sensor data generated by 
technical objects that are part of the Internet of Things (IoT). In addition to the API services SAP 
Leonardo IoT offers a number of apps that are built upon the services and help you step inside the 
world of the Internet of Things37. GE Digital Predix Essentials is a complete solution for industrial 
data monitoring and event management, combining asset connectivity, edge-to-cloud analytics 
processing, and a feature-rich user console38. 

 

Proprietary platforms include typically repositories of enterprise-wide raw data, but combined with 
big data and search engines, a data lake (or enterprise data hub) can deliver impactful benefits. 
Data lakes bring together data from various sources and make it easily searchable, maximizing 
discovery, analytics, and reporting capabilities for end-users. Examples of benefits from these type 
of approaches include such as (Accenture): 

 Data richness - as an example ability to store and process structured data (XML, JSON, audio, 
image, video) and unstructured data (text files, sensor data, surveys) from multiple sources and 
types. 

 User productivity - search is a universal tool for finding information. End-users of the data can 
get the data they need quickly via a search engine, without SQL knowledge. 

 Cost savings and scalability - example open source typically has zero licensing costs, allowing 
the system to scale as data grows. 

 Complementary to existing data warehouses – data warehouse and data lake can work in 
conjunction for a more integrated data strategy. 

 Expandability - data lake framework can be applied to a variety of use cases, from enterprise 
search to advanced analytics applications across industries  

As an example, Bittium PROSE is based on a hybrid micro-service architecture with layered 
approach. Back-end functionality is split into logical business level micro-services, which form the 
base for all functionality. For the most part these business services do not implement pure micro-
service principle though, as they share common data storage's behind the interfaces and services. 
This hybrid approach is possible due to relatively modest data traffic and simultaneous usages for 

                                                      

34 ‘ThingWorx Platform Product Brief’ <https://www.ptc.com/en/resources/iiot/product-
brief/thingworx-platform> [Accessed at June 10, 2020]. 

35 ‘The Internet of Things Delivers the Data’ <https://www.ibm.com/internet-of-
things?lnk=hpmpr_iot> [Accessed at June 12, 2020]. 

36 ‘Azure IoT’ <https://azure.microsoft.com/en-us/overview/iot/#overview> [Accessed at June 12, 
2020]. 

37 ‘Internet of Things (IoT)’ <https://www.sap.com/products/intelligent-technologies/iot.html> 
[Accessed at June 10, 2020]. 

38 ‘Predix Platform’ <https://www.ge.com/digital/iiot-platform> [Accessed at June 12, 2020]. 
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most of the services. For the more heavily used part, of update packages distribution, pure micro-
service architecture is applied. This will take the load off from the bigger part of services and still 
allow putting additional capacity to the services which are been used most heavily. Access to 
business services are restricted by authentication and authorization on information level and also 
controlled by different network segments so that for example the device updates service exposes 
only the limited information that is required for that purpose. 

3.3. Conclusions and Limitations 
Factories are complex environments that contain a variety of data sources coming from 
manufacturing assets, processes, products and so on. Real-time or near real-time asset tracking 
systems are used to gather data from the shop floor with different technologies. Real time location 
and industrial IoT systems are two of them, which fed data for developing optimization and resilience 
capabilities in CyberFactory#1 project. 

When RTLS systems are considered, every solution has its own advantages and disadvantages. 
The selection of the technology strongly depends on the constraints of the operating environment 
and the requirements. Besides, organizations need to incorporate asset management capabilities 
that optimize not only their assets’ availability, performance, and quality, but also their energy 
consumption in order to stay competitive in a rapidly changing market. Table 1 presents main 
advantages and disadvantages of each of the mentioned indoor RTLS technologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Comparison of indoor RTLS technologies 
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Technology Accuracy Range Battery 
Life 

Cost Strengths Weaknesses 

BLE 2-3 m 10-20 
m 

Good Low Ubiquity; Good 
balance between 
accuracy and total 
cost; Scalability 

Shorter range than 
some alternatives 
(can be increased at 
the expense of 
battery) 

RFID 
(active) 

2-3 m 20-30 
m 

Good Low Low latency Not many 
advantages over 
BLE 

RFID 
(passive) 

2-3 m 2-3 m N.A. Very 
low 

Tags don’t need 
battery and are very 
cheap 

Provides only 
proximity 

UWB Sub-
meter 

20-30 
m 

Good High Has the best 
accuracy 

High tag and 
infrastructure price 

Wi-Fi 3-5 m 20-30 
m 

Poor High Can use existing 
infrastructure and 
devices 

Worse than other 
technologies in 
almost every aspect 

ZigBee 3-5 m 20-30 
m 

Good Low Can use a mesh 
topology 

Not many 
advantages over 
BLE 

 

BLE technology offers low cost and low power consumption with an average range in terms of 
RTLS. If enough number of fixed point devices are used, it also offers good accuracy. In addition, 
the new standard (version 5.1) has a special focus on indoor tracking by introducing direction 
estimation (by using AoA method) and improving the advertising mode. This will allow to further 
improve its accuracy (based on direction feature), scalability and reliability (based on the improved 
advertising). 

UWB technology has proven to be effective in indoor positioning with highest accuracy. They have 
very good response time and can be more power efficient RF active tags, with similar range but 
higher accuracy. However, UWB can be susceptible to metal interference and requires complex 
installation. 

Wi-Fi technology has the advantage that most buildings already have an existing WiFi infrastructure 
in place and reduces investment cost. However, software RTLS would be needed and the accuracy 
and range would depend on the distribution of the WiFi access points. Increasing the access points 
increases the coverage and accuracy but will increase the cost and the possibility for interference. 
Another drawback of Wi-Fi is its poor accuracy (3-5 m).  

RFID technology has been around some decades and commonly used instead of barcodes which 
needs line-of-sight between reader and tag. The absence of battery in passive tags reduces the 
size and costs which in turn reduces the range to 2-3 m. If passive RFID is considered for RTLS, 
the limited range eliminates the possibility of proper tracking because it needs a prohibitive number 
of readers both in terms of cost and space. Another problem is the tag collision, which happens 
when a reader cannot process simultaneous responses from different tags. Active RFID tags have 
their own power source, which increases the range while increasing the size and cost of the tag. 
The major limitation of the active RFID technology is its average accuracy.  

ZigBee is a low power RF technology used for RTLS. When compared to WiFi, it has lower power 
consumption and lower cost at the expense of a lower data rate. It usually uses a mesh topology, 
unlike WiFi using a star topology, meaning nodes in the network are connected to each other, 
allowing better scalability and reliability. The biggest drawback of ZigBee is the poor accuracy (3-5 
m) and can be used only in room level tracking.  IIoT platforms have gained importance due to their 
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functionality in production environments. They connect information systems, secure the data within 
the platform and of the interfaces, manage the processes and systems connected, analyze the data 
that is inside the platform to provide meaningful information, and build apps and agents to support 
user decision. Table 2 summarizes the strengths of leading IoT platforms.  

Table 2 Comparison of IoT platforms 39 

 Connectivity Integration Analytics Application Security 

Thingworx x  X X  

Watson IoT   X  X 

Azure  X X X  

SAP Cloud   X X X 

GE Predix   X  X 

 

Azure manages to integrate enterprise systems, non-IP and IP capable devices by the help of its 
IoT hub and logic apps tools. Almost all platforms provides analytics tools. The SAP cloud platform 
shows advanced capabilities in application, analytics and security fields and also features an 
Intuitive user interface. The ThingWorx platform offers advanced solutions in analytics and 
application field. It has predictive and prescriptive analytics features with high support of augmented 
reality application. The Predix platform offers advanced capabilities in application and analytics 
fields. The analytics tool of Predix is capable of big data analysis, anomaly detection, identification 
of trends, visual recognition, analysis of texts, machine learning, and the application of many other 
analytical algorithms. The Watson IoT platform shows advanced proficiencies in analytics and 
security fields. The analytics capabilities of the platform are based on predictive, cognitive, real-
time and con-textual methods.  

This section of the document provided the state-of-the-art for RT and near RT location, tracking and 
sensing technologies/methods. Each technology has its pros and cons. Then, the selection for an 
application depends on the requirements of the system and the environment it will be implemented. 
In addition, the performance of the tracking system is very dependent on the application 
environment. The project has ten use cases that means very different manufacturing environments, 
from cheese manufacturing to aircraft part manufacturing, will be under consideration. Prominent 
real-time monitoring technologies will be deployed to different production environments and relevant 
development will be made in order to get valuable data from shop floor. Also, tailor made solutions 
will be developed for different industries. The obtained data is not limited to the geolocation data 
obtained from RTLS but also the data obtained from real-time / near-real-time tracking of 
manufacturing assets, materials and processes with IIoT platforms, which are in the heart of all kind 
of factories. The data obtained from RT tracking systems will be used for further simulation, 
optimization and security-related developments in other work packages of the project. 

                                                      

39 Jorg B. Hoffmann, Pit Heimes, and Semih Senel, ‘IoT Platforms for the Internet of Production’, 
IEEE Internet of Things Journal, 6.3 (2019), 4098–4105 
<https://doi.org/10.1109/JIOT.2018.2875594>. 



 

State-of-the-Art on FoF Optimization 
Date 03.03.2021 

 

CyberFactory#1  |  www.cyberfactory-1.org 32 

 

When it comes to the limitations of real time tracking and indoor positioning technologies, it may be 
argued that characteristics of these various techniques closely related to each other and only one 
aspect (accuracy, cost, precision, efficiency, performance, etc) can be optimized within one given 
implementation. Cyberfactory#1 project aims to tackle these drawbacks of the RTLS and IPS 
systems with characteristics better applying to specific usecases with improved optimization 
techniques such that low cost solutions are possible with acceptable accuracies while still offering 
good performance. Traditional on premise solutions for data collection and analytics that do not 
meet the requirements of the amount of data generated with advanced sensing and tracking 
techniques will be overcome through novel the data lake architectures that combine inputs from 
different types of data sources incorporated to the manufacturing processes. 

New manufacturing machines can transmit data about production processes via wired or wireless 
connections thanks to IIoT. However, the majority of the machines in today's factories do not have 
such features we have just mentioned because the lifespan of the machines used in factories is 
decades and their replacement costs are very high. These machines either do not generate 
information about their production processes or cannot export the information they produce to an 
external database. This results in the lack of knowledge about production, limiting the possibilities 
to develop solutions for optimized and secure manufacturing. 

With the real-time tracking and monitoring solutions developed in the Cyberfactory # 1 project, it 
will be ensured that information that could not be obtained from legacy machines and processes in 
factories before will be collected and stored.  In the project, new platforms will be developed / 
integrated to capture and store data generated in the production machinery and related systems. 
In addition, new data sources will be created by integrating new sensors into legacy machines and 
systems. Thus, real-time or near real-time data will be obtained, transmitted and processed for new 
optimization and security services. For example, geolocation data of service robots used in 
production will be obtained in real time and security solutions will be developed (geofencing). The 
information obtained from all systems will also be accumulated in a data lake. This will allow to 
reveal hidden patterns in the data using big data processing methods (elastic search, machine 
learning etc) and to develop optimization, predictive and security services. In conclusion, the project 
will help to add new data sources from the shop floor in industrial sites, collect data in real-time or 
near real-time as much as possible and develop optimization and security services based on this 
new data sources. 

4. Data lake exploitation 
Data Lake is an umbrella term used to refer to a massively scalable storage repository, where data 
arrives at high velocity rate and in a native format (structured, unstructured or hybrid). These data 
storages are equipped with engines capable of querying and formatting data on the fly according to 
the users specificities and needs (schema-on-read). In the Industry 4.0 scenario40, most of the data 
is context data generated by sensors, connector, controllers, manufacturing systems, people and 
many others. 

Some of the data needs to be processed in real time (stream processing). In this case, the data is 
not fully stored, and the processing time is constrained to the incoming data velocity. It is usually 
used or implied on systems where decisions need to be taken in a critical time, for example in a 
robot navigation system, security systems, etc. Others store and process the data in batches with 
soft time constraints, the data is formatted and validated according to the objective function, for 
example predict the equipment maintenance, failures in the production, etc. The lakes must be 
dynamic in order to accommodate the highly mutable data41. Regardless of the data type or source, 

                                                      

40 Piccarozzi, Michela & Aquilani, Barbara & Gatti, Corrado. (2018). Industry 4.0 in Management 
Studies: A Systematic Literature Review. Sustainability. 10. 3821. 10.3390/su10103821.  

41 Miloslavskaya, Natalia & Tolstoy, Alexander. (2016). Application of Big Data, Fast Data and 
Data Lake Concepts to Information Security Issues. 10.1109/W-Fi Cloud.2016.41.  
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one of the Industry 4.0 goals is to extract value from the data, in order to gain competitive advantage 
in the global market. 

4.1. Data Lake Technologies 
Kylo data lake, is an open-source data lake platform. It is built on Apache Hadoop and Spark. Kylo 
provides key services such as self-service data ingest data preparation and data discovery.  Kylo 
is web application installed on a Linux “edge node” of a Spark and Hadoop cluster. Kylo uses 
Apache NiFi as its scheduler and orchestration engine, it offers flexibility to create more than 200 
processors (data connectors and transforms). Kylo can be integrated with Apache Ranger or Sentry 
and CDH Navigator or Ambari for cluster monitoring42. 

Most of the Kylo UI depends on AngularJS and AngularJS material running in a Tomcat container. 
Furthermore, Kylo uses JBoss ModeShape and MySQL (or Postgres) to store metadata. It operates 
over RHEL, CentOs, SUSE, Ubuntu systems. Kylo is supported by Cloudera, Hortonworks, Map R, 
EMR, and vanilla Hadoop distributions. Kylo requires at least four core CPUs and a minimum of 
16GB of RAM. 

Elasticsearch43 is a document-oriented database. The search engine is based on the Lucene library. 
It is open and free to the community. Elasticsearch runs on Amazon EC2, or on Amazon 
Elasticsearch Service. Elasticsearch manages data from different formats, such as structured or 
unstructured text, numerical data, categorical data or geospatial data. It is data-distributed oriented, 
and it offers analytic services in real-time. This is due to the fact, that instead of searching the key-
words, it searches based on an index. Additionally, it supports full-text search, which is completely 
based on documents instead of tables or schemas. 

Apache Kafka44 is a real-time data stream, for storing, reading and analysing data stream.  Apache 
Kafka organizes and categorizes information into topics, using the function Producer, which is an 
interface between applications and topics, Kafka Topic Log is a database for ordering and segment 
the data. Another important interface is Consumer, that allows topic logs to be read, and the 
information stored in them can be passed onto other applications. 

Delta lake45 is an open-source data storage layer that delivers reliability to the data lake, Delta lake 
implements ACID transactions, scalable metadata handling, and unifies the streaming and the batch 
processing. Delta lake leverages metadata through a Spark, thus it can handle petabyte-scale 
tables with billions of partitions and files. Delta lake keeps some sort of historical consistency, which 
means that data can be reverted to old formats or old experiments can be reproduced. Delta lake 
compresses data efficiently using an Apache Parquet format, and it can enforce schemas, this 
ensures that the data types are correct and required columns are presented, preventing bad data 
from causing data corruption. These schemas are not static, and they can be reconfigured any time.  

                                                      

42 https://kylo.readthedocs.io/en/v0.10.0/. [Accessed at March 4, 2021] 
 
43 U. Thacker, M. Pandey and S. S. Rautaray, "Performance of elasticsearch in cloud 
environment with nGram and non-nGram indexing," 2016 International Conference on Electrical, 
Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 3624-3628. 
 
44 B. R. Hiraman, C. Viresh M. and K. Abhijeet C., "A Study of Apache Kafka in Big Data Stream 
Processing," 2018 International Conference on Information , Communication, Engineering and 
Technology (ICICET), Pune, 2018, pp. 1-3. 
 
45 M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres, H. van Hovell, A. Ionescu, 
A. Łuszczak, M. Świtakowski, M. Szafrański, X. Li, T. Ueshin, M. Mokhtar, P. Boncz, A. Ghodsi, S. 
Paranjpye, P. Senster, R. Xin, and M. Zaharia. 2020. “Delta lake: high-performance ACID table 
storage over cloud object stores”. Proc. VLDB Endow. 13, 12 (August 2020), 3411–3424. 
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Hadoop46 is an open source, Java based framework used for storing and processing big data in a 
distributed system. Several modules such as the HDFS, Thrift, Hive, MapReduce and Spark 
compose the Hadoop Ecosystem. These components can be used to create a data lake, for 
example, using Hadoop in a data lake architecture source data and curated data can co-exist 
together. 

City Cloud47 is a cloud service and it can be an important component of a data lake architecture. 
The City Cloud offers network services, hardware services, and monitor dashboard. It is compatible 
with the most of OpenStack APIs. Apache Nifi48 is another tool that can be useful in a data lake 
architecture, Apache Nifi manages efficiently data flow between systems, it allows data 
visualization, data routing, data transformation and system mediation through intuitive graphs. It 
works as a Kylo scheduler and orchestration. NiFi is an open-source system, and it is executed 
inside of JVM hosted in the host operating system. The web server handles the HTTP-based 
command and controls the API, and Flow Controller is the core part, which is focus on managing 
the schedule and receiving resources to execute. The FlowFile Repository is where NiFi keeps track 
of the state of what it knows about a given FlowFile that is presently active in the flow49. The Content 
Repository is for storing the actual data content, and the Provenance Repository is for storing all 
provenance event data. 

4.2. Data Lake Use Cases 
There are several ways to use a data lake, it can be used to store big data50, in another words, data 
that comes from equipment reading, telemetry data, logs, etc. It can be used to store IoT (Internet 
of Things) data types, it can store data stream used in near real-time analytics51. It can be useful 
for data scientists, for example, the data science lab is a platform for data scientist. It allows the 
processment of data, merging and combining data from different data sources for a large set of 
different task or applications such as financial, wealth, social, vendors, network, etc. The data 
science lab has a custom data lake infrastructure, which is based on object storage and the Apache 
Spark™ execution engine and related tools contained in Oracle Big Data Cloud. It uses Oracle 
Analytics Cloud for data visualization, data preparation and extract data relationships in the data 
lake. Furthermore, Oracle Database Cloud Service is used to manage metadata.  

It an enterprise level, data lake can be used as a staging area of a data warehouse, this can be 
achieved using ETL (Extract-Transformation-Load) engines in order to transform non-structured 
data into highly structured data52. Depending on the level of transformation needed, offloading that 

                                                      

46 S. G. Manikandan and S. Ravi, "Big Data Analysis Using Apache Hadoop," 2014 International 
Conference on IT Convergence and Security (ICITCS), Beijing, 2014, pp. 1-4. 
 
47 https://citycontrolpanel.com/apidoc/index.html. [Accessed at March 4, 2021]. 
 
48 https://nifi.apache.org/docs.html.  [Accessed at March 4, 2021]. 
 
49 A. Pandya, et al., "Privacy preserving sentiment analysis on multiple edge data streams with 
Apache NiFi," in 2019 European Intelligence and Security Informatics Conference (EISIC), Oulu, 
Finland, 2019 pp. 130-133. 
 
50 S. Munirathinam, S. Sun, J. Rosin, H. Sirigibathina and A. Chinthakindi, "Design and 
Implementation of Manufacturing Data Lake in Hadoop," 2019 IEEE International Conference on 
Smart Manufacturing, Industrial & Logistics Engineering (SMILE), Hangzhou, China, 2019, pp. 19-
23, doi: 10.1109/SMILE45626.2019.8965302. 
 
51 R. Liu, H. Isah and F. Zulkernine, "A Big Data Lake for Multilevel Streaming Analytics," 2020 
1st International Conference on Big Data Analytics and Practices (IBDAP), Bangkok, Thailand, 
2020, pp. 1-6, doi: 10.1109/IBDAP50342.2020.9245460. 
 
52 Campbell, Chris. "Top Five Differences between Data Warehouses and Data Lakes". Blue-
Granite.com. Retrieved 19 May 2017. 
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transformation processing to other platforms can both reduce the operational cost and free up data 
warehouse resources in order to focus on its primary role of serving data.  Oracle’s Data Integration 
Platform Cloud (DIPC) is an example of a engine used to extract, load and transform data for the 
data warehouse. The data lake can be used to augment the data warehouse. The data lake might 
be accessed via federated queries, which make its separation from the data warehouse transparent 
to end users through a data virtualization layer. Data Lake can be used also to store all the 
organizational data in order to support downstream reports and analytic activities53. Some 
organization use the data lake as a unique repository for all types of data. Usually, the goal is to 
store as much data as possible in order to support analytics that might yield valuable findings. 
Finally, from the application point-of-view, data lake can be a data source for a front-end application, 
it can also act as a publisher for a downstream application. 

4.3. Big Data Technologies 
In the literature, Big data, Data Lake and Fast data are concepts highly correlated and interrelated. 
Their differences mostly reside on user or application specificities. Big data technologies are built 
over five key elements: velocity, volume, value, variety, and veracity. The term velocity is related to 
the speed at which the data is generated, collected and analyzed, the ability to process data faster 
them competitors is an important competitive advantage, since it can help decision makers to make 
faster and more accurate business decisions. The amount of data that can be processed is also an 
important factor, this is due to the data dependency of machine learning algorithms, such as deep 
neural networks. These algorithms extrapolate more accurately when data is available in large 
amounts and variety. The data itself adds value to the company, it gives to the company competitive 
advantages with respect to competitors. Furthermore, useful insights and value can be derived and 
added from data aggregation and exploitation techniques, when using data from different cross-
domains. The last key component is veracity or validity, and it reflects the data quality. Algorithms 
are expected to perform better when the data is clean and when the target variables are annotated 
accurately. This can be achieved by cleaning and filtering processes, and through the analysis and 
agreement of different raters or expert annotators.                                                                           
To the best of our knowledge, mostly of the Big data technologies could be also used to create a 
data processment pipeline for a data lake infrastructure. Thus in this section, an overview of Big 
data technologies is presented, and their re-usability and migration to data lake infrastructure is 
explored. An extensive literature review of the big data technologies and their requirements on two 
case studies (railways and wind turbines) could be found in 32.  Some big data processing pipelines 
have already been proposed, these are divided in the following steps: distributed queuing, big data 
stream platforms, big data storage and stream SQL engines. 

Distributed queuing systems are key tools, since they manage the messages from the consumers 
and the producers. The recent distributed system supports several consumer groups online and 
more importantly prevent data loss by utilizing persistent disks over replicated clusters. Some 
distributed management technologies are Kafka, RabbitMQ, Amazon Kinesis, Hubs and Google 
Pub/Sub. A full description of these technologies is presented in54. Following the rationale in 54  

federated queues is the most important feature, since it provides a mechanism for balancing the 
load of a single queue across several nodes. It also supports migration among nodes without 
stopping the producers and the consumers. Currently the only technology that supports federated 
queues is RabbitMQ.  

Big data platforms can be roughly divided in those specialized in batch processing or stream 
processing. Batch processing refers to the action of processing blocks of data that have already 

                                                      

53 Fang, Huang. (2015). Managing data lakes in big data era: What's a data lake and why has it 
became popular in data management ecosystem. 820-824. 10.1109/CYBER.2015.7288049. 

54 Sahal, Radhya & Ali, Muhammad Intizar & Breslin, John. (2020). Big data and stream 
processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use 
case. Journal of Manufacturing Systems. 54. 138-151. 10.1016/j.jmsy.2019.11.004.  
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been stored in memory for a large periods of time, Hadoop MapReduce 55 is an example of a 
framework tailed for batch processing. On the other hand, stream processing requires analytic 
results in real-time. There are several open source stream processing platforms such as Apache 
Kafka, Apache Flink, Apache Storm, Apache Samza. The most important feature to explore is the 
presence of a fault tolerance mechanism. Some authors implement a check pointing RDDs, such 
as Spark, others use Checkpointing such as Samza, which seems to be a reasonable choice56, 
since it processes a stream of data, it is scalable, it can use RabbitMQ as queuing management 
system, and it offers an interactive shell, although the learning curve of the programmer and 
maintenance might be an issue. In order to accommodate the large variability of data formats and 
requirements, several data storage technologies are at disposal. To handle data streams in a real-
time fashion into a NoSQL and batch data: column-based storage (HBASE, Cassandra), document-
based (MongoDB), CouchDB, DynamoDB, Riak, Redis, Neo4J are good choices. In 57, Cassandra 
is selected do to its compatibility with Presto but it is also chosen together with HBase for a large 
big data storage. To handle big data in a more historical perspective, Hadoop Distributed File 
System (HDFS) is in general a good option. The HDFS is a distributed file system that handles large 
data sets running on commodity hardware. The HDFS is a “master-slave” architecture i.e. a Master 
node that manage the file's namespace and adjust client access files and all the other nodes, and 
Slave nodes that are used to manage the storage. In Hive, a technology used for the Big data 
warehouse, built on HDFS is used to store and distribute large volumes of static data. From our 
current analysis, the data storage technology is highly dependent on the application requirements 
and the data type.   

In order to be able to extract mining information from high velocity of data, some technologies have 
been proposed, such as Spark SQL, Table API, KSQL, PipelineDB, Squall, StreamCQL, 
SamzaSQL, StormSQL, Siddhi and Athemax. The most important feature is the windowing, 
knowledge is extracted from the streaming data, by applying a sliding window over the time series, 
inside this window a mathematical operation is performed. Afterwards, the outputs are aggregated 
and joined. There are five type of windows: Tumbling, Sliding, Hopping, Session and Snapshot 
window, a fully description can be found in58 . 

4.4. Proprietary Platforms  
Proprietary platforms typically include repositories of enterprise-wide raw data, but combined with 
big data and search engines, a data lake (or enterprise data hub) can deliver impactful benefits. 
Data lakes bring together data from various sources and make it easily searchable, maximizing 
discovery, analytics, and reporting capabilities for end-users. Examples of benefits from these type 
of approaches include such as (Accenture): 

Data richness- As an example ability to store and process structured and unstructured data from 
multiple sources and types, including XML, text, JSON, audio, image, video, etc. 

User productivity- search is a universal tool for finding information. End-users of the data can get 
the data they need quickly via a search engine, without SQL knowledge. 

                                                      

55 Dean, Jeffrey & Ghemawat, Sanjay. (2004). MapReduce: Simplified Data Processing on Large 
Clusters. Communications of the ACM. 51. 137-150. 10.1145/1327452.1327492.  

56 M. Pathirage, J. Hyde, Y. Pan and B. Plale,  "SamzaSQL: Scalable Fast Data Management 
with Streaming SQL," in 2016 IEEE International Parallel and Distributed Processing Symposium 
Workshops (IPDPSW), Chicago, IL, USA, 2016 pp. 1627-1636. 

57 Santos, Maribel & Sa, Jorge & Andrade, Carina & Lima, Francisca & Costa, Eduarda & Costa, 
Carlos & Martinho, Bruno & Galvão, João. (2017). A Big Data system supporting Bosch Braga 
Industry 4.0 strategy. International Journal of Information Management. 
10.1016/j.ijinfomgt.2017.07.012.  

58 Kleppmann, M. (2017), Designing Data-Intensive Applications , O'Reilly , Beijing . 
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Cost savings and scalability- Example open source typically has zero licensing costs, allowing the 
system to scale as data grows. 

Complementary to existing data warehouses – data warehouse and data lake can work in 
conjunction for a more integrated data strategy. 

Expandability- Data lake framework can be applied to a variety of use cases, from enterprise search 
to advanced analytics applications across industries  

As an example, Bittium PROSE is based on a hybrid micro-service architecture with layered 
approach. Back-end functionality is split into logical business level micro-services which form the 
base for all functionalities. For the most part, these business services do not implement pure micro-
service principle though, as they share common data storage's behind the interfaces and services. 
This hybrid approach is possible due to relatively modest data traffic and simultaneous usages for 
most of the services. For the more heavily used part, of update packages distribution, pure micro-
service architecture is applied. This decreases the load on the bigger part of services and still allows 
putting additional capacity to the more services heavily used. Access to business services are 
restricted by authentication and authorization on information level and also controlled by different 
network segments so that for example the device updates service exposes only the limited 
information that is required for that purpose. 

4.5. Intelligent Techniques  
The gradual implementation of big data and the Internet of Things in a modern work environment is 
revolutionizing the business sector. The concept of the factory of the future refers to a new way of 
organizing production materials and responding to the impact of globalization on our economic 
existence in the form of the fourth industrial revolution. Industry 4.0 implements new methods of 
data processing, intelligent software, and sensors to fully digitize the value chain so that suppliers 
and consumers can monitor what is happening inside the company in real time. By deploying the 
right combination of AI technologies, namely statistic methods, machine learning, deep learning, 
producers can increase efficiency, increase flexibility, accelerate processes, and even achieve self-
optimized operations. Using AI can reduce the conversion cost of the manufacturer59. Producers 
can use AI to develop and produce innovative products that target specific customers and deliver 
these products with shorter delivery times, resulting in more sales. Therefore, AI is an indispensable 
part of the factory of the future, and its technology will enhance the flexibility of the factory structure 
and process. AI enables computers and machines to perform tasks in an intelligent manner. It can 
help producers to determine the best sequence of operations to achieve their goals and enable 
them to manage operations remotely in real time. AI is widely used, since many industry leaders 
expect AI to transform processes end to end in the value chain, including engineering, procurement, 
supply chain management, industrial operations (production and related functions), marketing, 
sales, and customer service. AI enhances rather than replaces existing levers that producers use 
to continuously increase productivity. It is one of the main technical building blocks of Industry 4.0. 
In addition, manufacturers can use AI to enhance traditional efficiency levers, such as automation 
and lean management. For example, by identifying the root cause of quality problems and thereby 
helping to eliminate defects, artificial intelligence supports lean management efforts to reduce 
waste. The use of AI will greatly change the composition of the workforce and reduce conversion 
costs because it reduces the need for manual activities in the production process. For example, 
tasks related to quality control now require a high degree of human involvement, will be highly 
automated, and have extensive AI support. AI represents a paradigm shift in factories. Today's 
factories use rule-based methods to automate processes and machinery, and today's robot 
programming solves a fixed set of situations. In contrast, factories in the future will use AI support 
to automate processes and machines to respond to unfamiliar or unexpected situations by making 
informed decisions. As a result, the technical system will be more flexible and adaptable. For 
example, under the rule-based method, the robot cannot identify and select the required parts from 
the unclassified parts box because it lacks the detailed programming necessary to cope with the 
various possible directions of the parts. In contrast, AI-enabled robots can pick the required parts 
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from unsorted materials, regardless of their direction. AI-techniques can be divided into two 
categories: statistical methods and machine leaning algorithms. Deep learning is a subsection of 
machine learning method. 

4.6. Concepts and techniques for machine learning and prediction of production 
dynamics 

The field of pattern recognition is concerned with the automatic discovery of regularities in data 
through the use of computer algorithms and with the use of these regularities to take actions such 
as classifying the data into different categories60. Pattern recognition has its origins in statistics, 
while the modern approaches to pattern recognition include the use of machine learning, due to the 
increased availability of big data. Statistical pattern recognition has been used successfully to 
design the recognition systems. In statistical pattern recognition, a pattern is represented by a set 
of d features, which is viewed as a d-dimensional feature vector. The goal is to choose those 
features that allow pattern vectors belonging to different categories to occupy compact and disjoint 
regions in a d-dimensional feature space. The effectiveness of the representation is determined by 
how well patterns from different groups can be separated. In the statistical decision theoretic 
approach, the decision boundaries are determined by the probability distributions of the patterns 
belonging to each class, which must either be specified or learned. Well-known concepts from 
statistical decision theory are utilized to establish decision boundaries between patterns. The 
recognition system is operated in two modes: training and testing. The role of the preprocessing 
module is to segment the pattern of interest from the background, remove noise, normalize the 
pattern, and any other operation which will contribute in defining a compact representation of the 
pattern. In the training mode, the feature selection module finds the appropriate features for 
representing the input patterns and the classifier is trained to partition the feature space. The 
feedback path allows a designer to optimize the preprocessing and feature selection strategies61. 
The analytic results based on current data, will help to predict the future behavior of the system and 
hence to plan or suggest actions to take for optimal outcomes. In order to perform the predictions, 
an appropriate model is required. In the following a model for an exemplarily factory context is 
described followed by an introduction to machine learning techniques for predictive modelling 
analysis. 

Statistics and Data Mining Approaches: 

It is not easy to distinguish data mining from statistical approaches, since there is not a concrete 
definition of those terms, and it depends on the background and the point of view of the reader. 
According to62, “Data mining is the nontrivial process of identifying valid, novel, potentially useful, 
and ultimately understandable patterns in data”. It shares common ground with Artificial Intelligence, 
Machine Learning, Pattern Recognition and Data Visualization. It is an interdisciplinary subfield of 

computer science and statistics; it evolves database and data management aspects, such as data 
pre-processing, model creation and visualization, inference, etc. In the data mining, the extraction 
of patterns and knowledge from a group of data records is entitled cluster analysis, in an unusual 
records is entitled anomaly detection, or in time series data (sequential pattern mining). Data mining 
techniques are often used to support decisions. Perhaps some of the most well-known examples 

                                                      

60 Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. 
 
61 A. K. Jain, R. P. W. Duin and Jianchang Mao, "Statistical pattern recognition: a review," in 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-37, Jan. 
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are E-commerce websites; many of them use Data mining to offer cross-sells and up-sells through 
their websites. 

On the other hand, statistic is a more general term, and concerns with the collection, organization, 
analysis, interpretation and presentation of the data. According to63, statistics should be defined as 
set of tools and topics/problems, such as probabilistic theory, real analysis, decision theory, Markov 
chains, ergotic theory, etc. Statistics focus on the data, including the planning of the data collection 
in terms of design a survey or/and an experiment. There are two main methods in statistics: 
descriptive statistic, which summarizes the data from a dataset (e.g. mean and standard deviation) 
and inferential statistics, which extract and validate hypothesis from the data that a subject to a 
random data perturbation. Statistical analysis are very often in the Industry, manage and measure 
the quality level of a production line, measure the employee efficiency, forecast future demands 
through the analysis of the past statistical trends. 

  

  

4.6.1. Mathematical and statistical modeling 

A model is a representation of a system and it is made of the composition of concepts. The model 
helps to describe the system and also to study different components effects, and to make 
predictions about future behavior of system. Mathematical modeling is the art of translating 
problems from an application area into tractable mathematical formulations whose theoretical and 
numerical analysis provides insight, answers, and guidance useful for the originating application64. 
It is successful in many applications by providing precision and direction for problem solution. 
Mathematical models provide a thorough understanding of the system modeled which will enable 
to improve the system design or control of it. 

A statistical model as a mathematical model, embodies set of statistical assumptions in regard to 
the accessible historical data65. A statistical model represents the data generating process. What 
distinguishes a statistical model from other mathematical models is that it can be non-deterministic. 
In a statistical model, which is specified with mathematical equations, all the variables do not 
necessarily have specific values, and some of variables have probability distributions instead; i.e. 
some of the variables are stochastic.  

Factory Model Setting: 

Considering a factory set up with a fleet of transport robots and a set of machines and stores (both 
are just sources and sinks), where the robot fleet fulfills the task of transporting goods between 
machines and stores. The information about all the machines and stores in addition to the 
information about observed data on previous transport jobs, e.g. a list of all transport jobs of the 
last month, is accessible. In the setup factory, the first goal is to find an appropriate model that best 
represents the task generating data, which can be performed by applying data processing and 
pattern recognition techniques upon information from historical runs. The more data is gathered by 
simulation, the better accuracy of matching configured patterns to data and more accurate 

                                                      

63 BROADFOOT, L. (2001). Graphical Analysis of Multiresponse Data: Illustrated with a Plant 
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prediction of future behavior of machines in generating tasks. Each of the transport tasks is 
illustrated by the following elements:  

 𝑚: Owner of the task, the machine that generated the transport request. 𝑚 ∈  𝑀, while 𝑀 
is set of all machines that generate tasks 𝑡:  when the transport task was generated, i.e. 
when the fleet of robots first knew about the task. 

 𝑡:  When the transport task was generated, i.e. when the fleet of robots first knew about 
the task. 

 𝑎: Source location, where the goods during current task should be picked up from, it can 
be location of either a machine or a store. 𝑎 ∈  𝐴, while 𝐴 is set of all possible source 
locations. 

 𝑏: Sink location, where the goods during current task should be transported to, it can be 
location of either a machine or a store. 𝑏 ∈  𝐵, while 𝐵 is set of all possible sink locations. 

 𝑡: Time that the transport goods were picked up from the source location to fulfill the 
current task. 

 𝑡: Time that the transport goods were reached at the sink location to fulfill the current 
task. 

Therefore, each task will be referred as a vector, 

𝑡𝑎𝑠𝑘 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑚
𝑡
𝑎
𝑏

𝑡

𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

 

𝑖 ∈ 𝐼, 𝐼 is set of all simulation runs. 

The set 𝑇𝐴𝑆𝐾 includes all 𝑛 number of generated tasks during a simulation run: 

𝑇𝐴𝑆𝐾 = {𝑡𝑎𝑠𝑘  |  𝑖 ∈  [1, 𝑛]}  Equation 1 .   

Predictive Model Analysis: 

Predictive analytics is the process of using data analytics to make predictions based on historical 
data. This process is applicable by using data analysis, data mining, statistics, machine learning, 
and deep learning techniques to create a quantitative predictive model, which will help to forecast 
future events, as shown in Figure 15. Typically, the data from system behavior in the past is used 
to build a mathematical model, where this model captures the more important trends. It can be used 
on current data of systems behavior to let predict what will happen next or to find the actions to 
optimize the outcomes. The supervised machine learning techniques are used to predict a future 
value (how long this machine can run before requiring maintenance) or to estimate a probability 
(how likely it is this customer to default on a loan)66. 

The enhancement of predictive web analytics calculates statistical probabilities of future events in 
an online manner. The core of predictive analytics relies on capturing relationships between 
explanatory variables and the predicted variables from past occurrences and exploiting them to 
predict (see Figure 15)67. One common usage of predictive models is for weather and energy load 
forecasting to predict energy demands in future. The energy producers need accurate forecasts of 
energy load to make decisions for managing loads in the electric grid. Vast amounts of data are 
available, and using predictive analytics, grid operators can turn this information into actionable 
insights. 
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Figure 15 - Prediction Analytics diagram. 

In order to use historical complex data to make an actionable information or decision, the predictive 
analytics should proceed the following steps and find the answers to the corresponding question: 

 Descriptive, i.e. what happened. 
 Diagnostics, i.e. why did it happen. 
 Predictive, i.e. what will happen. 
 Prescriptive, i.e. what should be done. 

Having a prediction of the task generation in the setup of the factory described above will help to 
plan the transport robots in a more efficient manner. Especially a prediction of transport job requests 
in a given time frame and a prediction of phases with really low or high number of transport needs 
are important. A transport plan may include the charge schedules, parking location assignments, 
and maintenance dates. The workflow for a predictive analytics application can be defined by the 
following basic steps: 

 Access to and import historical data. 
 Clean and preprocess the data, e.g. remove outliers, or identify data spikes and possible 

missing data points. 
 Merge data.  
 Perform time-series modeling to extract important predictors. 
 Develop an accurate predictive model based on the aggregated data using statistics, 

curve fitting tools or machine learning. When the training is complete, the model should be 
tried against new data to see how well it performs. 

 Integrate the model into a factory task generation system.  

Another example of Predictive Analytics application is in retail trade. Different retail companies 
always need to improve their sale. One of the most prevalent examples is in their recommendations, 
which is based on prediction about customers’ requirements. When the customer makes a purchase 
from the website of one retail companies, the company will offer a list of other relevant items. 

Shmueli and Koppius68 highlighted the need to integrate predictive analytics into information 
systems research. They describe six roles for predictive analytics: new theory generation, 
measurement development, comparison of competing theories, improvement of existing models, 
relevance assessment, and assessment of the predictability of empirical phenomena. Since 
explanatory power does not imply predictive power and thus predictive analytics are necessary for 
assessing predictive power and for building empirical models that predict well.  

Predictive Model Building 

To extract the insights holding by historical data, an accurate predictive model is needed. Predictive 
modeling uses mathematical and computational methods to predict an event or outcome. These 
models forecast an outcome at some future state or time, based upon changes to the model inputs. 
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Using an iterative process, the model will be developed by using a training data set and then test 
and validate it to determine the accuracy of predictions69. Examples include time-series regression 
models for predicting traffic flow or predicting fuel efficiency based on a linear regression model of 
engine speed versus load. 

The predictive analytics will help to predict demands and foresee if a change will help the setup 
factory to reduce risks and to improve operations. The main objective is to answer the question, 
what is most likely to happen based on the current historical data and what can change the 
performance. The model should learn from previous runs data from factory. For example, the model 
might look at historical data of a specific machine task generation. By establishing the right controls 
and algorithms, the model can be trained to look at how many tasks were generated on a certain 
time or were performed from specific source to specific sink location and correlate that data into 
predictions about future task generation by that machine. In another word, to steady one of the 
elements in task vector, and analyze the pattern in other elements. The predictive analytics model 
should be able to identify patterns about the flow of generating tasks in factory and their details. 
Also, it is critical to regularly retrain the learning model. It is always possible that the actual patterns 
change due to factors like the time of year or changes in the factory production. 

A schematic of the model building steps in explanatory and predictive modeling is shown in Figure 
16. Although the main steps are the same, within each step a predictive model dictates different 
operations and criteria70. 

 

Figure 16 - Schematic of the Steps in Building an Empirical Model (Predictive or Explanatory) (extracted 
from71) 

Predictive modelers use a variety of tools to explore and analyze the data. Most analytical tools 
offer some exploratory capabilities. Basic tools enable analysts to compile descriptive statistics of 
various fields (e.g., min/max values and standard deviation), while others incorporate more powerful 
data profiling tools that analyze the characteristics of data fields and identify relationships between 
columns within a single table and across tables.  

The basic process of creating analytic models involves running one or more algorithms against a 
data set with known values for the dependent variable that are interested to predict. Then, the data 
set is cut in half, one set for creating a training model and the other set for testing the training 
model72. For the setup factory, an algorithm, which trained by the tasks of the last few month, can 
be developed to predict the task upcoming in a specific time frame. Then, the resulting training 
model is applied against the other part of the database to see how well it predicts which tasks 
actually have been generated. Last, the model should be validated in real time by testing it against 
live data.  

The process of training, testing, and validation is iterative. Meanwhile, different combinations of 
variables should be identified and tested to see which ones have the most impact. In order to start 

                                                      

69 https://www.mathworks.com/discovery/predictive-analytics.html [Accessed at July 16, 2020]. 
 
70 Shmueli, G., & Koppius, O. (2011). Predictive Analytics in Information Systems Research. MIS 
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the process, using statistical tools can help with identifying significant trends in data, e.g. time of 
the day. Consulting with expert people in the same field, and studying the previous researches may 
lead to find the appropriate and important variables too. These are the variables that should be 
implemented in the result model. In next steps, a variety of algorithms should be tested to see which 
one works best on training data. 

The approaches for conducting predictive analytics can be classified into machine learning 
techniques and regression techniques. Machine learning techniques are popular in conducting 
predictive analytics due to their outstanding performance in handling large datasets.  

Predictive Modeling using Machine Learning 

Predictive models often rely on nonparametric data mining algorithms, e.g. classification trees, 
neural networks, and k-nearest-neighbors and nonparametric smoothing methods, e.g. moving 
average forecasters. The flexibility of such methods enables them to capture complex relationships 
in the data without making restricting statistical assumptions. 

During the modelling phase data is searched for useful patterns. Within the machine learning 
process, dataset needs to pass through the modeling process to identify the patterns from the 
datasets. Predictive modeling is the general concept of building a model that is able to make 
predictions. Such a model includes a machine learning algorithm that learns certain properties from 
a training dataset to make the predictions. Predictive modeling can be divided further into two sub 
areas: regression and pattern classification. Regression models are based on the analysis of 
relationships between variables in order to make predictions about continuous variables, e.g. the 
prediction of the maximum number for the upcoming days in weather forecasting. Pattern 
classification assigns discrete class labels to particular observations as outcomes of a prediction. 
To go back to the above example: A pattern classification task in weather forecasting could be the 
prediction of a sunny, rainy, or snowy day73.  

Clustering is the division of data into groups of similar objects. Clustering, as one common data 
analysis technique, models the data by its clusters to get an intuition to find either hidden patterns 
or groups. It can be defined as the task of identifying subgroups in the data such that data points in 
the same subgroup are very similar and data points in different clusters are very different. From a 
machine learning perspective, clusters correspond to hidden patterns, the search for clusters is 
unsupervised learning and the resulting model represents a data concept. From a practical 
perspective clustering plays an outstanding role in data mining applications such as scientific data 
exploration, information retrieval, marketing, medical diagnostics and many others. While 
representing the data by fewer clusters necessarily loses certain fine details, but it achieves 
simplification instead74. The goal of clustering is to investigate the structure of data by grouping the 
data points into distinct subgroups, e.g. clustering the data from factory runs in different groups 
based on day of week. Different clustering analysis methods are applicable with different software, 
such as R, SPSS, MATLAB, Python or even Excel, through number of toolboxes, packages and 
libraries.  

Data clustering algorithms can be divided into two main types: hierarchical and partition. 
Hierarchical algorithms find successive clusters using previously established clusters, whereas 
partition algorithms determine all clusters at time. Hierarchical clustering builds a cluster hierarchy 
or, i.e. a tree of clusters. Every cluster node contains child clusters and sibling clusters. This 
approach allows exploring data on different levels of granularity. Hierarchical clustering methods 
are categorized into agglomerative (bottom-up) and divisive (top-down). An agglomerative 
clustering starts with one point (singleton) clusters and recursively merges two or more most 
appropriate clusters. A divisive clustering starts with one cluster of all data points and recursively 

                                                      

73 R Raschka, S. (2014). Predictive modeling, Supervised machine learning, and pattern 
classification. Machine Learning. 
 
74 Berkhin P. (2006) A Survey of Clustering Data Mining Techniques. In: Kogan J., Nicholas C., 
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splits the most appropriate cluster. The process continues until a stopping criterion (frequently, the 
requested number k of clusters) is achieved. Advantages of hierarchical clustering include:  

 Embedded flexibility regarding the level of granularity.  
 Ease of handling of any forms of similarity.  
 Applicability to any attribute types.  

In addition, the disadvantages of hierarchical clustering are:  

 Vagueness of termination criteria.  
 Most hierarchical algorithms do not revisit once constructed (intermediate) clusters with 

the purpose of their improvement. 

The partitioning algorithms divide data into several subsets. Because checking all possible subset 
systems is computationally infeasible, certain greedy heuristics are used in the form of iterative 
optimization. Specifically, this means different relocation schemes that iteratively reassign points 
between the k clusters. Unlike traditional hierarchical methods, in which clusters are not revisited 
after being constructed, relocation algorithms gradually improve clusters. One approach to data 
partitioning is to take a conceptual point of view that identifies the cluster with a certain model whose 
unknown parameters have to be found. 

More specifically, probabilistic models assume that the data comes from a mixture of several 
populations whose distributions and priors we want to find. One clear advantage of probabilistic 
methods is the interpretability of the constructed clusters. Having concise cluster representation 
also allows inexpensive computation of intra-clusters measures of fit that give rise to a global 
objective. Another approach starts with the definition of objective function depending on a partition. 
Depending on how representatives are constructed, iterative optimization partitioning algorithms 
are subdivided into k-medoids and k-means methods. k-means clustering and partitioning around 
medoids are well known techniques for performing non-hierarchical clustering. 

The k-means algorithm assigns each point to the cluster whose center, centroid, is nearest. The 
center is the mean of all the points in the cluster that is, its coordinates are the arithmetic mean 
for each dimension separately over all the points in the cluster.  The algorithm passes through the 
following steps: 

I. Select a number of classes/groups to use and randomly initialize their respective center 
points. To figure out the number of classes to use, data is pre-examined quickly to identify 
any distinguishable groups. The center points are vectors of the same length as each data 
point vector. 

II. Classify each data point by computing the distance between that point and each group 
center and assign the point to that group whose center is closest to it. 

III. Based on these classified points, recompute the group center by taking the mean of all the 
vectors in the group. 

IV. Repeat these steps for a set number of iterations or until the group centers don’t change 
much between iterations. It is also possible to randomly initialize the group centers a few 
times, and then select the run that looks like it provided the best results. 

k-means tries to cluster the dataset into k numbers of predefined distinct non-overlapping groups 
where each data point belongs to only one group. It tries to make the inter-cluster data points as 
similar as possible while also keeping the clusters as different as possible. It assigns data points to 
a cluster such that the sum of the squared distance between the data points and the cluster’s 
centroid (arithmetic mean of all the data points that belong to that cluster) is at the minimum. k-
means clustering minimizes within-cluster variances (squared Euclidean distances). Better 
Euclidean solutions can be found using k-medians and k-medoids. 

k-means has the advantage that it is pretty fast and does a very good job when the clusters have a 
kind of spherical shapes, but has a couple of disadvantages. It does not learn the number of clusters 
from the data and requires pre-definition of possible clusters. k-means also starts with a random 
choice of cluster centers and therefore it may yield different clustering results on different runs of 
the algorithm. Thus, the results may not be repeatable and lack consistency. Other cluster methods 
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are more consistent. Moreover, it suffers as the geometric shapes of clusters deviates from 
spherical shapes. 

K-means clustering is known to be sensitive to the outliers although it is quite efficient in terms of 
the computational time. For this reason, k-medoids clustering are sometimes used, where 
representative objects called medoids are considered instead of centroids.  

Since k-medoids clustering is based on the most centrally located object in a cluster, it is less 
sensitive to outliers and noises. Instead of using the mean point as the center of a cluster, k-medoids 
uses an actual point in the cluster to represent it. Medoid is the most centrally located object of the 
cluster, with a minimum sum of distances to other points75. Representation by k-medoids has two 
advantages. First, it presents no limitations on attributes types, second, the choice of medoids is 
dictated by the location of a predominant fraction of points inside a cluster and therefore, it is less 
sensitive to the presence of outliers. In k-means case a cluster is represented by its centroid, which 
is a mean (usually weighted average) of points within a cluster76. 

Two early versions of k-medoid methods are the algorithm PAM (Partitioning Around Medoids) and 
the algorithm CLARA (Clustering LARge Applications)77. PAM, known to be most powerful among 
algorithms for k-medoids clustering, is iterative optimization that combines relocation of points 
between perspective clusters with re-nominating the points as potential medoids. The guiding 
principle for the process is the effect on an objective function, which is obviously a costly strategy. 
CLARA uses several samples with thousands points each, which are each subjected to PAM. The 
whole dataset is assigned to the resulting medoids, the objective function is computed and the best 
system of medoids is retained. However, both methods have the drawback that they are working 
inefficiently for a large data set due to time complexities78. There have been some efforts in 
developing new algorithms for k-medoids clustering.  

It can be proved that the k-means and k-medoids algorithms will always terminate, but it does not 
necessarily find the best set of clusters, corresponding to minimizing the value of the objective 
function. The initial selection of centroids can significantly affect the result. To overcome this, the 
algorithm can be run several times for a given value of k, each time with a different choice of the 
initial k centroids, the set of clusters with the smallest value of the objective function then being 
taken. The most obvious drawback of this method of clustering is that there is no principled way to 
know what the value of k ought to be79. 

One of the major drawbacks of k-means is its naive use of the mean value for the cluster center. 
One difference between k-means and Gaussian mixture models is that while k-means performs 
hard classification, Gaussian Mixture Model (GMM) performs soft classification, i.e. k-means tells 
us what data point belong to which cluster but will not provide us with the probabilities that a given 
data point belongs to each of the possible clusters. The other difference is that k-means does not 
account for variance. GMMs give more flexibility than k-means, by assuming the data points are 
Gaussian distributed; this is a less restrictive assumption than saying they are circular by around 
the mean. The clusters can take any ellipse shape, rather than being restricted to circles. 
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In two dimensions, variance determines the shape of the distribution. One way to think about the k 
-means model is that it places a circle, or a hyper-sphere in higher dimensions, at the center of 
each cluster, with a radius defined by the most distant point in the cluster. This method works 
properly when data is circular. When data have different shapes, GMM can help more where models 
can handle even oblong clusters. There are two parameters to describe the shape of the clusters: 
the mean and the standard deviation. To find the parameters of the Gaussian for each cluster, 
optimization algorithm called Expectation-Maximization (EM) is used. The Gaussians distributions 
should be fitted to the clusters. The procedure is described as follows: 

I. Select the number of clusters and randomly initialize the Gaussian distribution parameters 
for each cluster. Taking a look at the data or heuristic methods can provide a good guess 
for the initial parameters. The Gaussians can initiate randomly but quickly being 
optimized. 

II. Given the Gaussian distributions for each cluster, compute probability that each data point 
belongs to a particular cluster. The closer a point is to the Gaussian’s center, the more 
likely it belongs to that cluster. 

III. Based on the probabilities, EM computes new set of parameters for the Gaussian 
distributions to maximize the probabilities of data points within the clusters. One way is to 
compute the new parameters by using a weighted sum of the data point positions, where 
the weights are the probabilities of the data point belonging in that particular cluster.  

IV. Steps 2 and 3 are repeated iteratively until convergence, where the distributions don’t 
change much from iteration to iteration. 

Due to the standard deviation parameter, k-means is actually a special case of GMM in which each 
cluster’s covariance along all dimensions approaches. Since GMMs use probabilities, they can have 
multiple clusters for one data point. So if a data point is in the middle of two overlapping clusters, it 
is simply defined to belong with X-percent to class 1 and with Y-percent to class 2, i.e. GMMs 
support mixed membership80. 

Two pioneering methods are the Random Decision Forests system81, and the Random Forests 
system82. Both use the approach of generating a large number of decision trees in a way that has 
a substantial random element, measuring their performance and then selecting the best trees for 
the ensemble. Ho argues that traditional trees often cannot be grown over a certain level of 
complexity without risking a loss of generalization caused by overfitting the training data. Ho 
proposes inducing multiple trees in randomly selected subsets of the feature space. He claims that 
the combined classification will improve, as the individual trees will generalize better on the 
classification for their subset of the feature space 83.  

Ho’s work introduced the idea of making a random selection of the attributes in order to use when 
each classifier is generated. Additionally Bierman introduced a technique known as bagging for 
generating multiple different but related training sets from a single set of training data, with the aim 
to reduce overfitting and improving classification accuracy84. Naturally, this is computationally 
expensive to do. Random Forests are powerful algorithm, which take care of missing values, outliers 
and other non-linearities in the data set. Random forest or random decision forest is a learning 
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method for classification, regression and other tasks that can be operated by constructing different 
decision trees during training time. The outcome is either the class in classification field or mean of 
prediction in regression of the individual trees. It is simply a collection of classification trees, which 
was the reason to name the method as ‘forest’. It uses bagging and feature randomness when 
building each individual tree to try a creation of an uncorrelated forest of trees whose prediction by 
group is more accurate than any individual tree decision. Random forests are an effective tool in 
prediction, and because of the Law of Large Numbers they do not overfit. Injecting the right kind of 
randomness makes them accurate classifiers and regressors.  

A forest of trees is inexplicable as far as simple interpretations of its mechanism go. In some 
applications, e.g. in analysis of medical experiments, it is required to understand the interaction of 
variables. A start on this problem is made by using internal out-of-bag estimates, and then verify 
them by reruns over selected variables. The forests use the random selection of features at each 
node to determine how to split. An important question is how many features to select at each node. 
For guidance, internal estimates of the generalization error, classifier strength and dependence are 
computed. These are called out-of-bag estimates. 

4.6.2. Online Learning 

Most of the machine learning algorithms assume the availability of whole historical data before the 
start of learning from them. However, sometimes it is required to learn from data at the same time 
as gathering them. Time-critical and memory-critical applications require real time learning, and 
massive data clustering with limited memory respectively. For example, business transaction of a 
large retail company require massive data clustering with limited memory. The data stream 
clustering problem is defined as to maintain a consistently good clustering of sequence observed 
so far, using a small amount of memory and time85. There are several modes in which the data may 
be available; in batch mode, a finite dataset is available from the beginning. This is the most 
commonly analyzed setting. Streaming mode refers to a setting where there is a finite amount of 
data to be processed but it arrives one data point at a time, and the entire dataset cannot be stored 
in memory. The online mode departs from the previous two settings in that there is an infinite amount 
of data to be analyzed and it arrives one data point at a time. Since there is an infinite amount of 
data, it is impossible to store all the data in memory86. In the online setting, it is much less clear 
how to analyze an algorithm’s performance. 

The recent data is considered as all the data available in the memory from the data stream, the 
historical data is the data observed in the data stream so far, which include the recent data. Except 
for the portion of recent data, historical data are not available in memory. The unprocessed recent 
data is called newly arrived data. If the entire historical data were available in memory, Gaussian 
mixture model would have been effectively estimated using the EM algorithm. For a data without 
complete historical records, the EM or any of its known variations is not applicable. One can adapt 
probability density based clustering algorithms to solve data stream clustering problems much more 
efficiently than applying the EM on the entire historical data, by applying standard EM algorithm 
only on newly arrived data. The resulted incremental GMM estimation algorithm merges Gaussian 
components that are statistically equivalent. The sufficient statistics of mean and covariance for a 
multivariate normal distribution make it possible to perform the tests and merging without resort to 
historical data. The idea is to merge density components rather than data, a deterministic and 
randomized incremental clustering algorithm with a provably good performance. It works in phases, 
each consisting of a merging and an updating stage. In the merging stage, the algorithm reduces 
the number of clusters by combining selected pairs; in the updating stage, the algorithm accepts 
new updates and tries to maintain specific number of clusters without increasing the clusters 
boundaries or violating certain constraints. It is undoubtedly important that algorithm to analyze 
generating task data operate in the online learning setting. This setting is applicable for forecasting, 
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real-time decision making, and resource-constrained learning, e.g. in case of failure occurrence in 
machines, transferring robots or driving paths.  

 𝑋்: Random data point (vector) in ℝௗ which is observed at time 𝑇 (superscript 𝑇 is omitted 
when the value of 𝑇 is not specified). 

 𝑑: Number of dimensions in data. 
 𝑔்: ℝ் → ℝ, an estimator of probability density function, 𝑝(𝑥), based on data points 

observed from beginning time 1 to time 𝑇. 
 𝑔ே(𝑥): An estimator of 𝑝(𝑥) based on historical data 𝑋ଵ, … , 𝑋ே. 
 𝑔ேାெ(𝑥): An estimator of 𝑝(𝑥) based on both historical data 𝑋ଵ, … , 𝑋ே and newly arrived 

data 𝑋ேାଵ, … , 𝑋ேାெ; 𝑀 newly arrived data sample. 

So, the data stream clustering problem will address: Obtain 𝑔ேାெ(𝑥) from 𝑔ே(𝑥). Here we assume 
that the cluster of each data point can be uniquely determined by 𝑔(𝑥). 

 Let 𝑔(𝑥) be 𝑔ே(𝑥). 
 Let 𝑞(𝑥) be an estimator of 𝑝(𝑥), based on 𝑋ାଵ, … , 𝑋ேାெ data.  

Estimators 𝑔(𝑥) and 𝑞(𝑥) are very likely different but obviously related to each other because they 
share the data 𝑋ାଵ, … , 𝑋ே. 

 Let 𝑡(𝑥) be an estimator of 𝑝(𝑥) based on 𝑋ଵ , 𝑋ଶ, … , 𝑋 (the data points removed from 
consideration of 𝑞(𝑥)). 

 Let 𝑎(𝑥) an estimator of 𝑝(𝑥) based on 𝑋ேାଵ, 𝑋ேାଶ, … , 𝑋ேାெ (the newly arrived data points 
included in 𝑞(𝑥)). 

Under the assumption that the data points are independently and identically distributed (i.i.d.), a 
theorem is established that dictates the way 𝑞(𝑥) is updated from 𝑔(𝑥) without exact knowledge of 
the overlapped data 𝑋ାଵ, … , 𝑋ே. When 𝐿, 𝑀 <<  𝑁, the theorem to be established will have direct 
impact on significantly improving the efficiency of the density estimation. 

Estimator Updating Theorem: for the estimators 𝑡(𝑥), 𝑔(𝑥), 𝑎(𝑥) and 𝑞(𝑥) defined on data points in 
four time intervals within [1, 𝑁 +  𝑀],  

𝑞(𝑥) =
ே(௫)ି௧(௫)ାெ(௫)

ேିାெ
. Equation 2 

This theorem is inspired by a relation among the empirical cumulative distribution functions (c.d.f.s). 
The empirical c.d.f.s 𝑇(𝑥), 𝑄(𝑥), 𝐺(𝑥), 𝐴(𝑥), corresponding to 𝑡(𝑥), 𝑞(𝑥), 𝑔(𝑥) and a(𝑥), respectively, 
are 

𝑄(𝑥) =
|{௫ஸ௫|ୀାଵ,ାଶ,…,ேାெ} |

ேିାெ
 Equation 3 

𝐺(𝑥) =
|{௫ஸ௫|ୀଵ,ଶ,…,ே}|

ே
  Equation 4 

𝑇(𝑥) =
|{௫ஸ௫|ୀଵ,ଶ,…,}|


  Equation 5 

𝐴(𝑥) =
|{௫ஸ௫|ୀேାଵ,ேାଶ,…,ேାெ}|

ெ
. Equation 6 

From the four definitions above, we have evidently  

𝐿𝑇(𝑥) +  (𝑁 −  𝐿 +  𝑀)𝑄(𝑥) =  𝑁𝐺(𝑥) +  𝑀𝐴(𝑥). Equation 7 

Thus, we obtain  

𝑄(𝑥) =
ேீ(௫)ି்(௫)ା ெ(௫)

ேିାெ
.  Equation 8 
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The algorithm for online data stream clustering by merging components in GMM, exploits the 
statistical structures of data using only newly arrived data, instead of keeping all historical data. The 
algorithm does show a tendency to produce more clusters than the standard EM algorithm. 
Sometimes two clusters really belong to one Gaussian component cannot be merged, because they 
do have different density individually. 

Online Clustering with Experts87 

Where the raw data is not yet labeled for any classification task, an unsupervised learning like 
clustering techniques can be used to summarize large quantities of data, but the outputs can be 
hard to evaluate. A domain expert may be useful in judging the quality of resulting clusters, but 
having a human in the loop is not always desirable. One way to analyze clustering algorithms is to 
formulate objective functions, and then to prove that the clustering algorithm either optimizes it or 
is an approximation algorithm. In case of success in defining reasonable objectives, approximation 
guarantees will fulfill the requirements, namely Online k-means Approximation.  

The k-means objective is a simple, intuitive, and widely-cited clustering objective. For a finite set 𝑆 
of 𝑛 points in ℝௗ and a fixed positive integer 𝑘 the k-means objective is to choose a set of 𝑘 cluster 
centers 𝐶 in ℝௗ  to minimize:  

𝛷(𝐶) = ∑ 𝑚𝑖𝑛
∈

‖𝑥 − 𝑐‖ଶ
௫∈ௌ , Equation 9 

which is referred to as the “k-means cost” of 𝐶 on 𝑋. This objective formalizes an intuitive measure 
of goodness for a clustering of points in Euclidean space. Optimizing the k-means objective is 
known to be NP-hard, even for 𝑘 =  2. Therefore, the goal is to design approximation algorithms88. 

However, few algorithms provably approximate it, even in the batch setting. One flexible framework 
is required in which the algorithm take a set of candidate clustering algorithms as experts and track 
the performance of the “best” or best sequence of experts. The algorithms compute an 
approximation to the current value of the k-means objective obtained by each expert instead of 
computing prediction errors and re-weighting the experts. As an analog, it is inspired by the 
evaluation framework to regret89. It proposed two possible methods for evaluating the performance 
of an online clustering scheme. The first is an approximation algorithm style bound: If at time 𝑡 an 
algorithm sees a new data point 𝑥௧ and then outputs a set of 𝑘 clusters 𝐶௧, then an approximation 
algorithm would find some 𝛼 ≥  1 such that 𝐶𝑜𝑠𝑡(𝐶௧)  ≤  𝛼 𝑂𝑃𝑇, where OPT is the cost for the best 
k clusters for 𝑥ଵ, … , 𝑥௧. Another type of performance metric is regret, which is a common framework 
in online learning. Under a regret framework, an algorithm would announce a set of clusters 𝐶௧ at 
time 𝑡, then recieve a new data point 𝑥௧ and incur a loss for that point equal to the squared distance 
from 𝑥௧ to its closest cluster in 𝐶௧.  

The regret framework for the analysis of supervised online learning algorithms evaluates algorithms 
with respect to their additional prediction loss. With the goal of analyzing online clustering 
algorithms, one can bound the difference between the cumulative clustering loss since the first 
observation: 

                                                      

87 Choromanska, A., & Monteleoni, C. (2012, March). Online clustering with experts. In Artificial 
Intelligence and Statistics (pp. 227-235). 
 
88 Aloise, D., Deshpande, A., Hansen, P., & Popat, P. (2009). NP-hardness of Euclidean sum-of-
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89 Dasgupta, S. (2008), Course notes, CSE 291: Topics in unsupervised learning. Lecture 6: 
Clustering in an online/streaming setting. Section 6.2.3. In http://cseweb.ucsd.edu/~dasgupta/291-
unsup/lec6.pdf. 
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𝐿்(𝑎𝑙𝑔) = ∑ 𝑚𝑖𝑛
∈

‖𝑥௧ − 𝑐‖ଶ
௧ஸ்  Equation 10 

Where the algorithm outputs a clustering 𝐶௧ before observing the current point 𝑥௧ and the optimal k-
means cost on the points seen so far. It provides clustering variants of predictors with expert advice 
and analyze them by first bounding this quantity in terms of regret with respect to the cumulative 
clustering loss of the best expert or best sequence of experts. 

Online k-means Clustering of Nonstationary Data90 

Considering a motivation example of a t-shirt retailer that receives online data about their sales. 
The retailer sells women, men, girls’ and boys’ t-shirts. Fashion across these groups is different; 
the colors, styles, and prices that are popular in women’s t-shirts are quite different from those that 
are popular in boys’ t-shirts. As fashion changes over time, so do the characteristics of each 
demographic. At every point in time, the retailer would like to be able to segment its market data 
into correctly identified clusters and find the appropriate current cluster average. This is a problem 
of online clustering of non-stationary data. More formally, consider dimensional data points, which 
arrive online and need to be clustered. While the cluster should remain intact, its center essentially 
shifts in d-space over time. The entire data set to be processed may not be available when one 
needs to begin learning; the data in the t-shirt example is not even finite. 

The standard k-means cost objective is unsuitable in the case of non-stationary data, therefore an 
alternative cost objective should be used. The objective function for traditional k-means clustering 
for available historical data is determined by  

𝑐𝑜𝑠𝑡(𝐶ଵ, … , 𝐶 , 𝑧ଵ, … , 𝑧) = ∑ ∑ ห|𝑥 − 𝑧|ห
ଶ

ଶ
:௫∈ೖ , Equation 11 

𝐶ଵ, … , 𝐶, are the k clusters and 

𝑧ଵ, … , 𝑧, are the k cluster centers 

In the online setting, the cost at any point in time is calculated by 

𝑐𝑜𝑠𝑡௧(𝐶ଵ
௧ , … , 𝐶

௧ , 𝑧ଵ
௧ , … , 𝑧

௧ ) = ∑ ∑ ||𝑥 − 𝑧
௧ ||ଶ

ଶ
:௫∈ೖ

  Equation 12 

This objective implicitly assumes that the goal is to find the best online clustering for all of the points 
seen so far, and at time 𝑡, all points 𝑥ଵ, … , 𝑥௧ contribute equally. In the non-stationary setting old data 
points should not be worth as much as new data points; the data may have shifted significantly over 
time. 

In order to consider this, the data from different times should be weighted differently. 

𝑐𝑜𝑠𝑡௧(𝐶ଵ
௧ , . . . , 𝐶

௧ , 𝑧ଵ
௧ , . . . , 𝑧

௧ ) = ∑ ∑ 𝛿௧ି ቚห𝑥 − 𝑧
௧ หቚ

ଶ

ଶ

:௫∈ೖ
 , 𝛿 ∈ (0.1) Equation 13 

The last objective function will result in k clusters, which minimize the weighted squared distance 
from each point to its cluster center, where the weight is exponentially decreasing in the age of the 
point. 

                                                      

90 King, A. (2012). Online k-means clustering of nonstationary data. Prediction Project Report, 1-
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4.6.3. Statistical Model of Time Patterns 

The statistical model of time pattern on the task generating flow can be built with mathematical 
statistics analysis and distribution fitting. The construction of statistical model of flow time pattern 
mainly includes three steps: data processing, distribution fitting and goodness-of-fit test91. 

Data Processing  

Data processing should be done on the observed data from simulations. The following factors 
should be determined: 

 The number of generated tasks in time unit, e.g. one hour, as a sample set 𝑋 in a total of 
n days simulation, expressed as 𝑥ଵ, … , 𝑥.  

 Maximum, minimum, and mean value as well as variance over each time unit segment 
over different days simulations. 

 Frequency of generating task number per unit time. 
 Histogram of measured frequencies.  

 

Distribution Fitting  

Distribution Fitting is the comparison probability distribution frequency histograms, Poisson 
distributions and normal distributions of generated tasks in unit time by using SPSS or MATLAB 
tools. The distribution Goodness-of-fit indicates whether the fitting distribution curve is reasonable. 
The method for the time pattern of flow, e.g. traffic flow, is usually a chi-square test, regression 
method or Kolmogorov-Smirnov test (K-S test). The K-S test is a nonparametric method to check 
the consistency between sample observation values and the given theoretical distribution and to 
determine if the sample observations from the given theoretical distribution based on the distribution 
analysis of the two differences. The basic idea is to  

 Set 𝑆(𝑥) as a cumulative probability distribution function with a random sample 
observation value of n time observations, called empirical distribution function. 

 𝐹(𝑥) is a specific cumulative probability distribution function, called theoretical distribution 
function.  

The sample empirical distribution function can be obtained directly from a sample and reflect the 
sample distribution situation directly, set to 

S୬(x) = ൞

0                       if x < x(ଵ)

୩

୬
    if x(୩) ≤ x ≤ x(୩ାଵ)  

1                       if x ≥ x(୬)

.  Equation 14 

Absolute difference will be 

D୬ = |S୬(x) − F(x)|. Equation 15 

For every 𝑥 value, if 𝑆(𝑥) is very close to 𝐹(𝑥) and the difference is very small, we can conclude 
that the fitting degree between the empirical distribution function and specific distribution function 
is very high and there is reason to think that the sample data come from the overall with the 
theoretical distribution. 

                                                      

91 Liu, Z., Liu, J., Liu, Y., & Wang, K. (2013). Model of prediction and statistics on time pattern of 
traffic flow. In ICTIS 2013: Improving Multimodal Transportation Systems-Information, Safety, and 
Integration (pp. 2341-2350). 
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4.6.4. Tools and Platforms for Machine Learning in Industry 

Intelligent techniques like machine learning methods for analyzing big data are promising tools for 
multiple applications in manufacturing like quality control92, predictive maintenance93 and resource 
management94. Applying such a technique requires processing of big data: data collection, data 
analysis, querying and storage. In the last years, multiple open-source tools for those processing 
steps were developed. We are referring to Sahal et al. for a comparison of those tools as decision 
support on which tool fits the best to the own use case95. The compared technologies comprise data 
collection, analysis, storing and querying. Especially the data analysis part of data processing can 
strongly benefit from machine learning techniques. For a comprehensive overview on challenges, 
advantages and applications on machine learning for manufacturing, we refer to96,97 and the 
following tools: 

TensorFlow 

TensorFlow is a comprehensive open source platform for machine learning, which allows Data 
preprocessing, model training and evaluation as well as data visualization98. Due to the simple 
modelling tools and easy to perform tutorials, it is a suitable tool for beginners in AI technologies. 
TensorFlow can be used directly in browser via google colab as well as API for Phyton, Javascript 
and IOS devices. As highlight for manufacturing, there is the TensorFlow Extended platform to 
compile a pipeline of components for production related ML implementations. 

Microsoft Azure 

Microsoft Azure is a cloud platform, which offers single services for database solutions, 
development, networking and computation. Each service can be composed to an overall system for 
customer’s individual solutions.99 For predictive analysis and machine learning purposes there is 
the Microsoft Azure “Machine Learning Studio” tool to interactively design your machine learning 
environment with components for data importing and preprocessing, model training and evaluation 
and comparison, predictive experimenting and web publishing. Due to a reduced deployment time 
for predictive models, the “Machine Learning Studio” tool allows the application of machine learning 
to production and manufacturing.100 

                                                      

92 Escobar, Carlos A., and Ruben Morales-Menendez. "Machine learning techniques for quality 
control in high conformance manufacturing environment." Advances in Mechanical Engineering 
10.2 (2018): 1687814018755519. 
 
93 Zonta, Tiago, et al. "Predictive maintenance in the Industry 4.0: A systematic literature review." 
Computers & Industrial Engineering (2020): 106889. 
 
94 Cadavid, Juan Pablo Usuga, et al. "Machine learning applied in production planning and 
control: a state-of-the-art in the era of industry 4.0." Journal of Intelligent Manufacturing (2020): 1-
28. 
 
95 Sahal, Radhya, John G. Breslin, and Muhammad Intizar Ali. "Big data and stream processing 
platforms for Industry 4.0 requirements mapping for a predictive maintenance use case." Journal 
of manufacturing systems 54 (2020): 138-151. 
 
96 Wuest, Thorsten, et al. "Machine learning in manufacturing: advantages, challenges, and 
applications." Production & Manufacturing Research 4.1 (2016): 23-45. 
 
97 Wang, Jinjiang, et al. "Deep learning for smart manufacturing: Methods and applications." 
Journal of Manufacturing Systems 48 (2018): 144-156. 
 
98 https://www.tensorflow.org/. [Accessed at March 4, 2021] 
 
99 https://www.computerweekly.com/de/definition/Microsoft-Azure. [Accessed at March 4, 2021] 
 
100 Barga, R., Fontama, V., Tok, W. H., & Cabrera-Cordon, L. (2015). Predictive analytics with 
Microsoft Azure machine learning (pp. 21-43). Berkely, CA: Apress. 
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IBM SPSS 

IMBSS SPSS is a commercial Statistic software set to perform an overall data analytic process 
including data preparation, analysis, report and implementation. Originally developed for 
researchers, the software is now one of the leading data analysis products for various companies, 
public authorities and pollsters. Different modules for e.g. model testing by bootstrapping, 
regressions (linear, normal, logistic regression), descriptive statistics, neural networks, decision 
trees and marketing analysis cover a wide range of applications including the manufacturing 
domain. 

SAS analytics 

SAS analytics101 is also one of the leading products for advanced data analytics. The platform 
offers a comprehensive toolchain for model building, categorical, multivariate and cluster data 
analysis and graphical result representation. 102 With simulation and project scheduling 
capabilities SAS analytics supports the decision making and the evaluation of alternatives in 
manufacturing and production management. 

H20 

“Democratize AI for everyone” - With this slogan H2O.ai offers his leading open source AI 
platform for companies, data scientists & factories.103 It is an interactive and easy to use tool for 
data importing, analyzing and graphical presentation. For manufacturing purposes, H2O.ai is 
suitable to predict and forecast supply chains, detect machine failures and faults, manage product 
in- and exports and perform optimization with a Security Cyberlake104. 

 

4.7. Machine learning applied to Industry 4.0  
The major goal of the Industry 4.0 is to enable the regeneration of the industrial sector towards a 
more reliable, efficient, resilient and competitive in the global market. In order to do so, it is 
necessary to converge information and technology59, thus creating a net system between the real 
and the physical world. Using such a net, advanced services can be provided from the exploration 
of the data, thus enabling systems to detect and identify anomalies, prevent downtimes, adjust 
schedules and better plan future action. In this sense, big data analytics and machine learning 
techniques are emerging as essential tools to extract mining from the data and also they can give 
some important insights about future events (e.g. predict a failure in the production line), support 
actions/decisions (e.g. adjust the production schedule) or even to give the most likely explanation 
of past events.  On the other hand, it is not easy to extract value from the digital information: the 
amount of data is huge, possibly very heterogeneous (data from different sensors such as numeric, 
audio and video), in different formats (unformatted text, reports or other source), different 
processing time requirements (online or batch data processing) and thus different computation 
requirements. All this data needs to be integrated in a common pipeline, in order to analyze and 
optimize production processes. Big data challenges can be schematized into four major dependent 
and interconnected components: Descriptive Analytics; Predictive Analytics; Prescriptive Analytics; 
Automated Analytics105. In the next sections, these concepts are going to be explored more deeply.  

                                                      

 
101 https://www.sas.com/en_us/home.html. [Accessed at March 4, 2021]. 
 
102 https://reviews.financesonline.com/p/sas-advanced-analytics/. [Accessed at March 4,  2021] 
 
103 Candel, A., Parmar, V., LeDell, E., & Arora, A. (2016). Deep learning with H2O. H2O. ai Inc. 
 
104 https://www.h2o.ai/democratizing-ai/. [Accessed at March 4,  2021] 

105 "Guest Editorial: Data Science Challenges in Industry 4.0," in IEEE Transactions on Industrial 
Informatics, vol. 16, no. 9, pp. 5924-5928, Sept. 2020, doi: 10.1109/TII.2020.2984061. 
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Prescriptive Analytics: 

The prescriptive analytic algorithms aim is to suggest to the user data-driven decisions based on 
predictions of models. These decision makers track deviations on the data distribution over the time 
(i.e. a time instance, where the object probability distribution has changed significantly) and are 
able to learn or re-learn the parameters of the distribution through fitting algorithms such as EM 
algorithm. In106, a weighted one-class support vector machine (SVM) can adapt its decision 
boundary on online data, in this way, the algorithm learns new patterns and forget old ones. Other 
approaches107, use an ensemble of classifiers (naïve Bayes or Linear Four Rates method108) in 
balance and unbalance datasets or more recently deep recurrent neural nets109. Deep learning 
models are the state-of-art approach in many domains and applications, due to their innate 
capability to approximate high complex probability distribution functions. On the other hand, these 
models suffer from huge data demand, a potential limitation concerning the amount of data available 
and its variability. The need to retrain or adapt the deep neural net to novel learning tasks and 
perhaps more importantly the lack of model comprehension. To recommend an action, it is (almost) 
mandatory to explain why such an action is the optimal one and on what facts such an action is 
supported. Based on these facts, some authors choose algorithms that can incrementally learn and 
adapt their internal configuration through data driven mechanisms.  

Predictive Analytics: Forecasting algorithms 

Another class of algorithms try to predict events, e.g. predict the machine speed in order to adjust 
processes, thus optimize the production throughput, and at the same time minimize the energy 
consumption.  This class of algorithms use past observations to forecast a fixed length sequence 
of future values, for e.g. in 110 the author tries to predict the internal speed of a metal can bodymaker 
machine. These algorithms are divided into traditional and advanced machine learning approaches.  
Some examples of traditional approaches are autoregressive integrated moving average111, SVMs 

                                                      

106 Krawczyk, Bartosz & Wozniak, Michal. (2014). One-class classifiers with incremental learning 
and forgetting for data streams with concept drift. Soft Computing. 10.1007/s00500-014-1492-5. 

107 Krawczyk, Bartosz. (2017). Active and Adaptive Ensemble Learning for Online Activity 
Recognition from Data Streams. Knowledge-Based Systems. 10.1016/j.knosys.2017.09.032. 

108 C. Lin, D. Deng, C. Kuo and L. Chen, "Concept Drift Detection and Adaption in Big Imbalance 
Industrial IoT Data Using an Ensemble Learning Method of Offline Classifiers," in IEEE Access, 
vol. 7, pp. 56198-56207, 2019, doi: 10.1109/ACCESS.2019.2912631. 

109 L. Cao, Z. Qian, H. Zareipour, Z. Huang and F. Zhang, "Fault Diagnosis of Wind Turbine 
Gearbox Based on Deep Bi-Directional Long Short-Term Memory Under Time-Varying Non-
Stationary Operating Conditions," in IEEE Access, vol. 7, pp. 155219-155228, 2019, doi: 
10.1109/ACCESS.2019.2947501. 

110 A. Essien and C. Giannetti, "A Deep Learning Model for Smart Manufacturing Using 

Convolutional LSTM Neural Network Autoencoders," in IEEE Transactions on Industrial 
Informatics, vol. 16, no. 9, pp. 6069-6078, Sept. 2020, doi: 10.1109/TII.2020.2967556. 

111 M. Alipour, B. Mohammadi-Ivatloo and K. Zare, "Stochastic Scheduling of Renewable and 
CHP-Based Microgrids," in IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1049-
1058, Oct. 2015, doi: 10.1109/TII.2015.2462296. 
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112 and regression trees113. On the other hand, Recurrent Neural Network (RNN)114, convolutional 
neural nets (CNNs)115, deep belief nets116, autoencoders 117 or even a mix of RNN and CNN layers 
are examples of advanced methods. Deep learning algorithms are considered state-of-art 
approaches, because they can explore very efficiently the temporal dependencies on the data, 
thought ingenious mechanisms such as gates in LSTMs or receptive fields in CNNs. Furthermore, 
these algorithms can handle data with a high dimensionality and generate a compact latent 
representation of the input data, using specialized encoding layers. On the other hand, traditional 
approaches do not handle efficiently data with a high dimensionality and in general dimensionality 
reduction techniques such as Principal Component Analysis (PCA) are applied. The PCA is 
considered an unsupervised dimensionality reduction technique, the goal is to select a projection 
onto some subspace where the data variability is not reduced significantly. Regarding this issue, 
Manifold Learning methods have been also used to compact the information of the original feature 
space into a lower dimensional space. One of such examples, is the so-called Self-Organizing Maps 
(SOM), an unsupervised learning technique based on a grid of neurons that learns a discrete 
representation of the input signal and keeps the topological properties of the original signal. SOM 
has been extensively used in feature reduction, novelty detection 118 and fault prognostic119. A linear 
discriminant analysis is a supervised technique that attempts to maximize the linear separation 
between data points belonging to different classes120.   

 

                                                      

112 Chun-Hsin Wu, Jan-Ming Ho and D. T. Lee, "Travel-time prediction with support vector 
regression," in IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 276-
281, Dec. 2004, doi: 10.1109/TITS.2004.837813. 

113 Cinzia Giannetti, Rajesh S. Ransing, Risk based uncertainty quantification to improve 
robustness of manufacturing operations, Computers & Industrial Engineering, Volume 101, 2016, 
Pages 70-80, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2016.08.002. 

114 Zaytar, Mohamed Akram & El Amrani, Chaker. (2016). Sequence to Sequence Weather 
Forecasting with Long Short-Term Memory Recurrent Neural Networks. International Journal of 
Computer Applications. 143. 7-11. 10.5120/ijca2016910497. 

115  X. Dong, L. Qian and L. Huang, "A CNN based bagging learning approach to short-term load 
forecasting in smart grid," 2017 IEEE SmartWorld, San Francisco, CA, 2017, pp. 1-6. 

116 J. Zhang, R. Xue, X. Gao, F. Chen, Y. Chen and J. Yan, "Medium and Long Term Electricity 
Demand Forecasting of Different Industries Based on Deep Belief Network," 2018 2nd IEEE 
Conference on Energy Internet and Energy System Integration (EI2), Beijing, 2018, pp. 1-6. 

117 C. Liu, L. Tang and J. Liu, "A Stacked Autoencoder With Sparse Bayesian Regression for 
End-Point Prediction Problems in Steelmaking Process," in IEEE Transactions on Automation 
Science and Engineering, vol. 17, no. 2, pp. 550-561, April 2020. 

118 Saucedo-Dorantes, Juan & Delgado-Prieto, Miguel & Romero-Troncoso, Rene & Osornio-
Rios, Roque. (2019). Multiple-fault detection and identification scheme based on hierarchical self-
organizing maps applied to an electric machine. Applied Soft Computing. 81. 105497. 
10.1016/j.asoc.2019.105497. 

119 X. Jin, Z. Que, Y. Sun, Y. Guo and W. Qiao, "A Data-Driven Approach for Bearing Fault 
Prognostics," in IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3394-3401, July-
Aug. 2019. 

120 Abdi, Hervé & Williams, Lynne. (2010). Principal Component Analysis. Wiley Interdisciplinary 
Reviews: Computational Statistics. 2. 433 - 459. 10.1002/wics.101. 
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Predictive Analytics: Maintenance Algorithms 

Another class of algorithms try to monitor the machine state, i.e. working under nominal (healthy) 
or faulty conditions. In detecting abnormalities in the machinery, industrial processes and schedules 
can be adjusted in order to avoid or minimize disruptions in the production line. The main limitation 
of these approaches is related to the number of unlikely events such as fault diagnosis in the 
databases. In Industrial applications, such conditions are likely to happen over undesired operating 
conditions, therefore maintenance support of classical approaches are limited. Furthermore, many 
of these outlier conditions are not properly annotated. In this sense, the algorithms task is to detect 
patterns that differ significantly from those available in the training set (novelty detection) and if 
possible, to predict a known fault scenario based on the training data (fault detection). The class of 
algorithms or machine learning frameworks fitted to this scenario are known as open set recognition 
problems. In this setting, a fraction of known classes is present in the training set, but perhaps novel 
or unseen classes might be present in the testing data. One standard approach is to apply a multi-
class SVM as in121, where for each class there a one-class classifier associated. This approach tries 
to associate an observation to a single classifier, in the case of two or more classes are likely to 
explain the data, similarity analysis is performed in order to assign a final class. In case that the 
data does not fit properly any of the classes, it is considered a novelty. Other studies do follow a 
slightly different approach, the algorithm starts to measure the similarity of the input data with 
samples from the training set. In122 a density analysis of the data space is expressed by a Cauchy 
function. In case of dissimilarity, the data is classified as coming from a novel unknown class. If 
there is a degree of similarity, a multi-class classification algorithm is performed, and an observation 
is associated to one of the known classes.  Another set of approaches use the so-called Anomaly 
Score (AS), a quantitative that measures the degree of “outlier” of an observation. AS can be used 
in an industrial environment to monitor the nominal condition of a system and select the optimal 
policy on the run.  

Automation analysis: Flexible manufacturing 

Flexibility is one of the key features of the Industry 4.0, the goal is to boost performance, reduce 
product life-cost and save resources using optimal consumption policies and at the same time reply 
and satisfy customer demands. In order to do so, efficiency and flexibility will heavily depend on the 
dynamic cooperation of large-scale machines. To manage and coordinate a large-scale of 
autonomous machines on accomplishing a customization task, it is necessary to find a high-
dimensional coordination decision-making policy123. A cluster of autonomous machines can 
coordinate their action if for example a large-scale machine coordination system is implemented 
and solved by a large-scale Markov Decision Process (MDP). Mostly of the policy learning 
algorithms require a large amount of trials and simulations in order to achieve high performances. 
The amount of experiments and perhaps their complexity might become problematic for a high 
dimensional family of coordination control policies. The most known approaches to solve large-
scale learning and decision problems for flexible manufacturing are: multiagent coordination control 
(based on a decentralized MDPs, where each agent dynamically adapts to the new coordination 

                                                      

121 Hao, Pei-Yi & Chiang, Jung-Hsien & Hsiu-Lin, Yen. (2009). A new maximal-margin spherical-
structured multi-class support vector machine. Appl. Intell.. 30. 98-111. 10.1007/s10489-007-
0101-z. 

122 Costa, Bruno & Angelov, Plamen & Guedes, Luiz Affonso. (2014). Fully unsupervised fault 

detection and identification based on recursive density estimation and self-evolving cloud-based 
classifier. Neurocomputing. 150. 10.1016/j.neucom.2014.05.086. 

123 J. Wang, Y. Sun, W. Zhang, I. Thomas, S. Duan and Y. Shi, "Large-Scale Online Multitask 
Learning and Decision Making for Flexible Manufacturing," in IEEE Transactions on Industrial 
Informatics, vol. 12, no. 6, pp. 2139-2147, Dec. 2016. 
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environment) 124, multitask policy gradient learning125 (the model is described by a set of states, 
actions and rewards, the optimal policy is attained by applying a gradient descendent method on a 
likelihood policy dependent function) and large-scale decision making 126 (focus on off-policy batch 
multi-task learning). One approach based on multitask policy gradient learning is policy reuse 127, 
in this case previous learned tasks are reused to bias the learning of new tasks with a certain 
associated probability. 

Descriptive Analytics: Self-Explainable algorithms 

Currently, deep learning algorithms are often seen as “black-box” models, i.e. a system which is 
simply viewed in terms of its input and output computations. The computations on the nodes happen 
and are driven by not completely known reasons. Furthermore, these nets can be easily tricked 
through adversarial attacks, i.e. input data that is intentionally designed to break or disrupt the 
learning process of a net, or even in the worst-case scenario to completely neutralize the net and 
therefore its designed functionality. These limitations open space and opportunities to improve not 
only the AI safety but also AI transparency in Industry 4.0. Since the FoF are going to be built on AI 
agents spread around the shop floor. These AI agents are going to be responsible to manage 
automatic industrial processes (sensors, actuators, etc.) or even perhaps safety mechanism. 
Therefore, it is mandatory to protect these systems from external entities, which may have malicious 
intentions, and make them more robust against adversarial attacks, by using redundant or self-
explainable mechanisms. If the net can provide an explanation of its decision in a way that 
resembles a rational followed by a human been, its decisions are more likely to be accepted and 
understandable by a human operator. On the other hand, unusual system behaviors can be more 
easily track by a human operator, simply by inspecting the consistency of the model’s explanation 
over the time. The challenges of the explainable artificial intelligence (XAI) algorithms include 
defining model explainability, formulating explainable tasks, and finally designing measurements 
that allow the evaluation of the model128. Attention mechanism is a self-explainable algorithm that 
tries to mimic the cortex of a human brain129. When our brain tries to describe an image, it does not 
look to the entire scene equally, but instead it focuses on specific shapes, colors, regions, object 
distribution, etc.  These Regions of Interest are only used during the classification process and they 
are highlighted in the original image, in doing so the human users can understand more clearly the 
rational followed by XAI algorithms. Currently, there are also some case studies of XAI algorithms 
and their application to Industrial scenarios, for example in search and recommendation and ranking 

                                                      

124 A. Bratukhin and T. Sauter, "Functional Analysis of Manufacturing Execution System 
Distribution," in IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 740-749, Nov. 2011,  
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reinforcement learning: a hierarchical Bayesian approach, 1015-1022. 10.1145/1273496.1273624. 

126 Li, Hui & Liao, Xuejun & Carin, Lawrence. (2009). Multi-task Reinforcement Learning in 
Partially Observable Stochastic Environments. Journal of Machine Learning Research. 10. 1131-
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algorithms130. Understanding the decisions made by an AI agent131 or understanding why the 
content of an email or web-page is fraudulent 132 or even understanding the sales predictions in 
terms of customer up-sell/churn 133 are some examples of resilient systems based on XAI.  

4.8. Conclusions and Limitations 
From the use cases, several sources of data are going to populate the lake. The amount and 
diversity of data, that is going to populate the lake is linked to their corresponding use case. For 
example, in textile industries, it is important to monitor the environmental humidity and temperature 
in order to produce high quality rubber. In cheese industry, the precise measurement of raw 
materials and products is crucial for a quality control. Regardless of its source, the data is going to 
be stored in the proposed data lake architecture. The proposed design will simplify the access to 
the data and the detection of patterns. It will allow deriving insights about existing and future 
operations in close-to-real-time. The lake must be dynamic in order to accommodate the high and 
mutable data. From the lake itself, a set of disruptive intelligent services based on ML approaches 
will foster a sustainable, secure, distributed and efficient set of data knowledge services, including: 
services for aggregation of information from the real-time monitoring; asset tracking, source code 
analytics, analytic services for the efficiency and efficacy of data usage, based on hybrid 
methodologies; intelligent decision support, able to transform the available data into knowledge that 
support decision making; cyber-security services from prevention, protection, detection and 
response to incidents on IT (critical) infrastructures. From the interaction itself between humans and 
machines, unexplored data sources like mouse and keyboard interaction events; speech and image 
data extracted from microphones and cameras are going to populate the lake. From such a data, 
health services are going to be provided, for example to measure stress, fatigue levels on the 
collaborators. This way, we’ll bring a holistic view of FoF assets contextual information, paving the 
way for disruptive intelligent services. 

Regarding the data lake and its efficiency, since the data lake is a repository to storage data in its 
natural format,  it requires skills and a large effort to use it, especially for data scientists since 
machine learning algorithms usually have hard constraints about the data format and structure. 
Furthermore, explore the data might be challenging, since it might not be easy to understand 
correlations if the data is not on the same format, the same rational for queering the data or perform 
some advance analytics. However, in our opinion, the biggest risk of data lakes is related to security 
and access control. Since data can be placed into a lake without any oversight, as some of the data 
may have privacy and regulatory need. On the other hand, Data Lake is easy to storage data, with 
less up-front time investment, because the data is stored in its original native format with no 
structure required initially.  

Smart factories need accurate forecasting techniques in order to make management decisions. 
Currently there is a big amount of data available, either from real factories or for by simulation runs. This 
information can be turned into actionable insights by hiring the data analysis and building a predictive 
model. The result insight will help to predict the demands and foresee the alterations in the setup factory 
to reduce risks and to improve operations. The data from system past behavior is used to build a 
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representative model, where this model captures the more important features. Hence it can be used on 
current data of system behavior to let us predict what will happen next or to find the actions to optimize 
the outcomes.  

Towards understanding of the factory behavior, the studies in terms of recognizing patterns in how 
it either behaved in past or behaves in real time becomes essential. Pattern recognition is applicable by 
using data analysis, data mining, machine learning, and deep learning techniques to create quantitative 
predictive model. Predictive modeling is the concept of building a model that is able to make predictions. 
Such a model includes a machine learning algorithm that learns certain properties from a training dataset 
to make the predictions. The core of predictive analytics relies on first to find and exploit two types of 
variables in system behavior, namely explanatory and predicted variables, and second to capture the 
relationships between them. Clustering as one common data analysis technique, models data and finds 
hidden patterns or groups, to get an intuition about the data. It identifies clusters such that data points 
in the same subgroups are very similar and data points in different clusters are very different. From 
machine learning perspective, the search for clusters is unsupervised learning. The goal of clustering is 
to investigate the structure of data by grouping the data points into distinct subgroups, e.g. clustering 
the factory runs data into different groups based on workload distributed over different days of week. 
Subsequently, the predictive analysis will formalize the relation between days and workload and the 
result model can be employed to achieve the prediction goal. 

While various methods have been proposed for the predictive analysis, there is a big challenge to study 
on which methods are more suitable for a given data. In addition, the sensitivity of the methods with 
regard to their parameter configuration should be evaluated and optimized in order to fulfill the 
requirements of pattern recognition and predicting the future behavior of the factory.  

The enhancement of predictive analytics projects the system behavior model and predict the future 
events in an online manner. Most of the machine learning algorithms assume whole data are available 
before start learning; however, to make real time decisions, it is also required to learn from data at the 
same time as gathering them. The online learning will help to maintain a consistently good clustering of 
observed data so far, and simultaneously build and update representative model of system behavior 
using a small amount of memory and time.  

 

 

5. H/M collaboration and optimization 
Cobots, or collaborative robots, are robots intended for direct human robot interaction within a 
shared space, or where humans and robots are in close proximity. Cobot applications contrast with 
traditional industrial robot applications in which robots are isolated from human contact. The aim of 
the H/M collaboration is to make the cobots more adaptive to the workers. The cobot capabilities 
shall be more easily extended to new situations, even by users without programming or robotics 
background. The common ground between all developments is the learning by demonstration 
methods. Learning from Demonstration or Learning by Demonstration (LbD) is a paradigm for 
enabling robots to autonomously perform new tasks. Rather than requiring roboticists to manually 
program a desired task, work in Learning by Demonstration takes the view that an a cobot behavior 
can be generated from observations of a human's own performance.  

5.1. Learning by demonstration 
The main principle of cobot LbD is that users can teach cobots new tasks without programming. 
Consider, for example, an industrial cobot in a shop floor that the worker wishes to perform a pick-
and-place operation with objects with different sizes. The task itself may involve different steps, 
such as detecting the different object shapes, adjusting the configuration to different form factors, 
and finally, applying the right pressure to handle the object. Furthermore, each time this task is 
performed, the robot will need to track the location of the objects over time. In a traditional 
programming scenario, a cobot developer would have to think in advance and code a robot 
controller that can respond to any situation the robot may face. This process may involve breaking 
down the task into multiple different steps, and thoroughly testing each step. If errors or new 
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circumstances arise after the robot is deployed, the entire costly process may need to be repeated. 
In contrast, LbD allows the user to perform a new action simply by showing it how to perform the 
task, no programming is required. Then, when failures occur, the user needs only to provide more 
demonstrations, rather than calling for development support. LbD hence embed robots with the 
ability to learn a task by generalizing from observing several demonstrations. 

5.2. Definition 
Robot Learning by Demonstration started in the 1980s134. Then, and now, robots had to be 
programmed for every task they performed. Learning by Demonstration (LbD)135 seeks to minimize 
or eliminate, this difficult step by letting users train their cobot to fit their needs. The expectation is 
that the methods of LbD, being user-friendly, will allow cobots to be utilized in day-to-day 
interactions with non-specialist humans. Research on LbD has grown in importance, since that 
period and several surveys have been published. Most of the work on LbD follows a more machine 
learning approach.136 Surveys of works in this area include Billard et al 2013 work137. At the core, 
however, LbD is inspired by the way humans learn from being guided by experts, from infancy 
through adulthood. Nehaniv & Dautenhahn138 phrased the problems faced by Learning by 
Demonstration in a set of basic questions:  

 What to imitate? 

 How to imitate? 

 Who to imitate? 

 When to imitate?  

What to imitate, relates to the problem of determining which aspects of the demonstration should 
be imitated. For a given task, certain properties of the environment may be irrelevant and safely 
ignored. Key to determining what is and is not important is understanding the metric by which the 
robot's behavior is being evaluated. Teaching what is and is not important can be done in multiple 
ways. The simplest approach is to take a statistical perspective and consider as relevant the parts 
of the data which are consistent across all demonstrations. If the dimension of the data is too high, 
such an approach may require too many demonstrations to gather enough statistics. An alternative 
is then to have the teacher help, the cobot determine what is relevant by pointing out parts of the 
task that are most important139. The issue of what to imitate take its root in developmental 
psychology. A fundamental step in child development occurs when children acquire the ability to 

                                                      

134 Hirzinger G, Heindl J. 1983. Sensor programming, a new way for teaching a robot paths and 
forces torques simultaneously. In Intelligent Robots: Conference on Robot Vision and Sensory 
Controls,Cambridge, Massachusetts/USA. 
 
135 Billard, A. (2002). Imitation. Handbook of Brain Theory and Neural Networks: MIT Press. 
 
136 Schaal, S., Ijspeert, A. and Billard, A. (2003). Computational approaches to motor learning by 
imitation, Philosophical Transactions: Biological Sciences (The Royal Society). 

137 Billard, A, Calinon, S, and Dillmann, R. (2013). Learning from Human Demonstration. 
Handbook of Robotics: MIT Press. 

138 Nehaniv, C.L. (2007), Nine Billion Correspondence Problems. In C. L. Nehaniv & K. 
Dautenhahn (Eds.), Imitation and Social Learning in Robots, Humans and Animals: Behavioural, 
Social and Communicative Dimensions, Cambridge University Press, 2007. 

139 Lockerd, A. and Breazeal, C. (2004), Tutelage and Socially Guided Robot Learning, IEEE Int. 
Conf. on Robotics and Intelligent Systems, IROS. 
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perform discriminative imitation140, that is, they move from imitating everything to imitating only the 
goal of the actions. 

How to imitate consists in determining how the cobot will perform the learned behaviors to maximize 
the metric found when solving what to imitate problem. Often, a robot cannot act the same way as 
a human does, due the physical differences. This issue is related to that of the ‘’’Correspondence 
Problem’’’141. Robots and humans, while sharing the same space and interacting with the same 
object perceive and interact with the world in different ways. To evaluate the similarity between the 
human and robot behaviors, we must first deal with the fact that the human and the robot may 
occupy different state spaces. We identify two different ways in which states of demonstrator and 
imitator can be said to correspond: 

 Perceptual equivalence: due to differences between human and robot sensory capabilities, 
the same scene may appear vastly different to each. For instance, while a human may 
identify humans and gestures visually, a robot may use depth measurements to observe 
the same scene. As the same data may therefore not be available to both humans and 
robots, successfully teaching a robot may require a good understanding of the robot's 
sensors and their limitations.  

 Physical equivalence: due to differences between human and robot representation, 
humans and robots may perform different actions to accomplish the same physical effect. 
For instance, even when performing the same task, humans and robots may interact with 
the environment in different ways. Solving this discrepancy in motor capabilities is akin to 
solving the how to imitate problem and is the focus of the Learning by Demonstration. For 
example, a robot may compute a path (in Cartesian space) for its end-effector that is close 
to the path followed by the human, while relying on inverse kinematics to find the 
appropriate motion to compensate the fact that the two bodies are different. 

Taken together, these two equivalences deal with discrepancies in how robots and humans are 
embodied. The perceptual equivalence deals with the way the agents perceive the world and makes 
sure that the information necessary to perform the task is available to both. Physical equivalence 
deals with the way agents affect and interact with the world and makes sure that the task is 
performable by both. 

5.3. Approaches  
The interface used to provide demonstrations plays a role in the way the information is captured 
and transmitted. We distinguish three major trends: 

 Directly recording human motions. When interested only in the kinematics of the motions, 
one may use any of various existing motion tracking systems, based on vision, exoskeleton 
or other wearable motion sensors. This method is based on the visual sensors of the robot, 
skeleton tracking systems or external motion sensors the demonstrator must wear. The 
robot will track the human movements with its sensors, registering all the human body or 
only the skeleton. Another form of teaching can be performed with body’s joints, given by 
motion tracking sensors worn by the demonstrator. This type of recording requires a robust 
tracking system, but it has the advantage to be external, thus giving a precise measurement 
of the movement. The movement first must be extracted from the environment (for the vision 
and tracking) and then to be adapted to the robot. 

This approach is suitable for application with high degree of freedom robots or non-anthropomorphic 
robots, where kinesthetic teaching is difficult. However, the machine learning problem is 
complicated by the need to map movements from the human's actions to those executables by the 

                                                      

140 Gergely, G, Bekkering, H. and Király, I. (2002), Rational imitation in preverbal infants, Nature, 
415(6873) p. 755-755. 
 
141 Nehaniv, C.L. (2007), Nine Billion Correspondence Problems. In C. L. Nehaniv & K. 
Dautenhahn (Eds.), Imitation and Social Learning in Robots, Humans and Animals: Behavioural, 
Social and Communicative Dimensions, Cambridge University Press, 2007. 
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robot. Occlusions during recordings, rapid movement, and sensor noise in the observations makes 
this approach not applied in the industry although it has been reported in furniture assemblies142.  

 Kinesthetic teaching, where the robot is physically guided through the task by the humans. 
With this approach, no explicit physical correspondence is needed, as the user 
demonstrates the skill with the cobot's structure. It also provides a natural teaching interface 
to correct a skill reproduced by the cobot. This method has no correspondence problem, 
there is no need to adapt the recorded solution to the robot. One drawback of kinesthetic 
teaching is that the human must often use more of their own degrees of freedom to move 
the robot than the number of degrees of freedom they are trying to control. A typically task 
that would require synchronization between multiple limbs are difficult to teach 
kinesthetically. The human can have some difficulties to execute the movement. If a task 
requires the use of several parts of the robot, the human may experience some troubles to 
move them simultaneously, especially to reach the desired orientation. To achieve a good 
precision, the demonstrator will most of the time use more degrees of freedom than the 
robot for the motion. As a result, complex tasks cannot be done with this method, except if 
they are sequenced into smaller simplest ones and then combined. 

The most common approach for introducing demonstrations in manufacturing applications is 
through kinesthetic teaching. On lightweight industrial robots this approach has been applied 
extensively to manipulators143 due its intuitive approach and minimal training requirements. It relies 
completely on the robot itself as it does not need additional sensors, interfaces or inputs. Finally, 
because it is using the robot integrated sensors eliminates the correspondence problem144. On the 
other hand, the kinesthetic teaching depends on the dexterity of the human user as it often requires 
post-processing smoothing techniques. 

 Teleoperation scenarios, where a human operator is limited to using the cobot's own 
sensors and effectors to perform the task. Going further than kinesthetics teaching, which 
limits the user to the robot's own body, teleoperation seeks to also limit the user's perception 
to those of the robot. This method is based on teleoperation systems, such as haptic devices 
or others remote control artifacts, allowing to remotely control the robot. Some external 
devices can be used to collect demonstration data, for instance joystick with feedback from 
the user can be used to record effort information. 

Teleoperation is advantageous in that it not only entirely solves the correspondence problem, but 
also allows for the training of robots from a distance. As the teacher no longer needs to be near the 
robot, it is well suited for teaching navigation and locomotion patterns. The disadvantages of this 
method are the understanding of the remote-control solution and its configuration to map the 
kinematic model of the robot. This is the correspondence problem of this method. In industrial 
environments, it requires additional effort to develop an input interface and a longer user training 
process bur it can be applied to complex systems such as robotic hands145 and underwater robots146. 

                                                      

142 Hayes B, Scassellati B. 2014. Discovering task constraints through observation and active 
learning. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 
 
143 Pervez A, Lee D. 2018. Learning task-parameterized dynamic movement primitives using 
mixture of GMMs. Intelligent Service Robotics 11:61-78. 
 
144 Argall BD, Chernova S, Veloso M, Browning B. 2009. A survey of robot learning from 
demonstration. Robotics and Autonomous Systems 57:469-483. 
 
145 Aleotti J, Caselli S. 2011. Part-based robot grasp planning from human demonstration. In 
2011 IEEE International Conference on Robotics and Automation. IEEE. 
 
146 Havoutis I, Calinon S. 2018. Learning from demonstration for semi-autonomous teleoperation. 
Autonomous Robots 43:1-14. 
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5.4. Current methods 
Current approaches to encoding skills through LbD can be divided between two trends: a low-level 
representation of the skill, taking the form of a non-linear mapping between sensory and motor 
information, and, a high-level representation of the skill that splits the skill in a sequence of action 
units. 

5.4.1. Low level learning of individual motions 

Individual motions could be taught separately instead of all at once. The human teacher would then 
provide one or more examples of each sub-motion apart from the others. If learning proceeds from 
the observation of a single instance of the motion, one calls this one-shot learning147. Examples can 
be found in the literature148 for learning locomotion patterns. Different from simple record and play, 
here the controller is provided with prior knowledge in the form of primitive motion patterns and 
learns parameters for these patterns from the demonstration. Multi-shot learning can be performed 
in batch after recording several demonstrations, or incrementally as new demonstrations are 
performed. Learning generally performs inference from statistical analysis of the data from the 
demonstrations. Popular methods include Gaussian Process, GMMs and SVMs149. 

5.4.2. Teaching Force-Control Tasks 

While most LbD work has focused on learning kinematic motions of end-effectors or other joints, 
one work has investigated extracting force-based signals from human demonstration150. 
Transmitting information about force is difficult for humans and for robots alike since force can be 
sensed only when performing the task ourselves. This line of work is fostered by advances in the 
design of haptic devices and tactile sensing, and on the development of torque and variable 
impedance actuated systems to teach force-control tasks through human demonstration. 

5.4.3. Learning high-level action composition 

Learning complex tasks, composed of a set of individual motions, is the goal of LbD. A common 
approach is to first learn models of all of the individual motions, using demonstrations of each of 
these actions individually151, and then learn the right combination in a second stage either by 

                                                      

147 Wu, Y and Demiris, Y (2010), Towards One Shot Learning by imitation for humanoid robots, 
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observing a human performing the whole task152 or through reinforcement learning153.  An alternative 
is to watch the human perform the complete task and to automatically split the task to extract the 
primitive actions. The main advantage is that both the primitive actions and the way they should be 
combined are learned in one pass. One issue that arises is that the number of primitive tasks is 
often unknown, and there could be multiple possible segmentations, which must be considered154. 

5.5. Motion planning approaches  
After recording the taught movement, it is necessary to obtain the mathematical representation of 
the movement. The resulting model must be an adaptation of the trajectory, which is robust against 
perturbations. There are to main techniques to achieve this representation: the Gaussian model 
and the Dynamic Motion Primitives. 

5.5.1. Gaussian Mixture Model 

This method extracts a set of primitive behaviors or actions from the given task and classifies them. 
Then it learns how to reproduce the movement from the individual behaviors and how to generalize 
it to new situations. This approach can be combined with a trajectory encoding which builds models 
operating in continuous spaces. For instance, it encodes the angular position of the robot’s joints 
or the Cartesian position, speed or torque of an end-effector by mapping the sensory inputs to motor 
outputs and velocities155.  

5.5.2. Dynamic Movement Primitives 

Dynamic movement primitives (DMPs) are a method of trajectory control / planning from Stefan 
Schaal’s lab. They were presented back in 2002 and then updated in 2013156. This work was 
motivated by the desire to find a way to represent complex motor actions that can be flexibly 
adjusted without manual parameter tuning or having to worry about instability. 

This control policy leads to DMPs which are autonomous nonlinear differential equations involving 
the positions, velocities and accelerations of the joints. This dynamical system encodes a trajectory 
from its initial state to its final state. This method does not require time-indexing and is robust 
against perturbations, thanks to the characteristics of the differential equations157. Finally, forcing 
terms are added to this model, allowing the learning of complex movements. DMPs are also simple 
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to learn by a robot because the weights of the forcing terms are learned separately and 
independently of each other to reduce the state space. Therefore, learning DMPs can be done 
quickly and efficiently even if a movement involves multiple degrees of freedom. The idea behind 
the DMPs is to use simple formulations of equations to encode the basic behavioral patterns and 
then to use statistical learning to adjust the obtained system to the task. This learning is obtained 
with the forcing terms. Due to the mathematical formulation, the DMPs have several properties 
including stability, invariance and robustness. There are several methods for both statistical and 
dynamical encodings of a skill, but not many studies have been conducted to comparing the DMP 
mechanisms. The only comprehensive comparison is presented by Silvain158, where several 
methods are compared. 

5.6. Commercial solutions 

For industrial ready-to-market products, the most widespread approach is the kinesthetic teaching. 
This approach has been included in some commercialized product as shown in Figure 17 from 
several manufacturers: (a) LBR iiwa arm from Kuka, (b) Yumi bi-manual manipulator from ABB, (c) 
Sawyer cobot from Rethink Robotics, and (d) SYB from Isybot.  

 

 

Figure 17  – Kinesthetic teaching with a commercialized robot, (Sanchez Restrepo, Susana. (2018). Intuitive, 
iterative and assisted virtual guides programming for human-robot co-manipulation. 
10.13140/RG.2.2.11845.55520.). 
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Teleoperation teaching has been used in industrial contexts. These devices are an evolution of the 
widespread teach-pendant devices found in most of the industrial robots with more advanced 
sensors such as haptic, force, magnetic, and inertia. Haption Designs, manufacturers and sells 
solution based on force-feedback. The Virtuoso 6D haptic device from Haption provides a solution 
for teleoperated robotic and industrial applications. 

 

5.7. Limitations of current approaches and solutions 
The DMP method does not consider the correlation changes between the movement variables and 
the variations observed among multiple demonstrations. Research in LbD is progressing rapidly, 
pushing back limits and posing new questions all the time. However, there are long-standing 
limitations and open questions. Generally, work in LbD assumes a fixed, given form for the robot's 
control policy, and learns appropriate parameters. To date, there are several different forms of 
policies in common usage, and there is no dominant technique. Furthermore, it is possible that a 
system could be provided with multiple possible representations of controllers and select which is 
most appropriate. The combination of reinforcement learning and imitation learning has been shown 
effective in addressing the acquisition of skills that require fine tuning of the robot's dynamics159. 
Likewise, more interactive learning techniques have proven successful in allowing for collaborative 
improvement of the learnt policy by switching between human-guided and robot-initiated learning. 
But there do not yet exist protocols to determine when it is best to switch between the various 
learning modes available. The answer may in fact be task dependent. In work to date, teaching is 
usually done by a single teacher, or teachers with an explicit concept of the task to teach. More 
work needs to be done to address issues related to conflicting demonstrations across teachers with 
different styles. Experiments in LbD have mostly focused on a single task (or set of closely related 
tasks) and each experiment starts from scratch. No previous tasks are considered. As learning of 
complex tasks progresses, means to store and reuse prior knowledge at a large scale will have to 
be discovered. Learning stages, similar perhaps to those found in child development, may be 
required. There will need to be a formalism to allow the robot to select information, to reduce 
redundant information to select features, and to store efficiently new data. More recent 
investigations on LbD point out as main limitation the generalization problem160. Generalization is 
the ability to respond to unseen circumstances which allows dealing with the real-world variability161. 
The ability to generalize differentiates systems that learn from systems that simply mimic a task. 
The generalization is at the core of the machine learning but some of the assumptions do not hold 
in robotic applications. The supervised algorithms assume that training and testing data is 
independent and identically distributed. However, in co-bot demonstrators some of the parts of the 
problem space are not covered162. DMPs formulate a nonlinear differential equation and produce 
the observed movement from a demonstration that generalizes appropriately changes in the initial 
and destination goals of the trajectory. However, it is hard to generate new behaviors from using 
DMPs. New investigations introduce task-oriented regression algorithms with a cost function that 
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takes task constraints into consideration to improve the DMPs generalization163. The 
implementation of Ijspeert et at164 DMP algorithm may lead to robot singularities when deployed 
onto a real cobot arm during the reproduction of the demonstrated movements. The singularities 
are the configurations in which the robot end-effector becomes blocked in certain directions. 
Overcoming this problem might be achieved by improving the algorithm that calculates the variable 
joint parameters to place the end effector of the cobot in a given position and orientation relative to 
the start of the chain. 

 

6. Distributed Manufacturing 
The industrial scenario is undergoing a profound transformation. The emergence of digital 
technologies led to the analysis and review of the entire production process. The Germans even 
define this phenomenon as Industry 4.0, the Americans as "smart manufacturing" and in France, 
people speak of "industry of the future"165. Regardless of the term adopted, the idea is the same: 
the industry is on the verge of a real revolution.  

In a world where communication between machines (with other devices or with the environment) is 
permanent, the need for each industrial organization to develop its management, organization and 
transformation of data flow into excellent ideas is growing. Is necessary to improve its industrial 
performance through the connection between operators, machines and processes, to significantly 
improve performance.  Additionally, with an estimated volume of data of 2.5 Exabyte per day and 
with increased connectivity across all manufacturing processes166, the ability to organize and 
transform dispersed data into business ideas becomes a competitive advantage for companies. 
With the recurring entry and exit of data, it becomes necessary to identify new ways of interacting 
with the machines and the industrial environment, through the creation of interfaces to facilitate the 
daily lives of employees and improve their productivity.  

With the growth in demand and with increasingly demanding standards1, advanced technologies 
are becoming the best solution for obtaining quantitative and qualitative improvements in production 
processes (e.g. increase productivity and flexibility with new generation technologies: collaborative 
robotics, additive manufacturing, advanced materials).Typically, companies use products of other 
companies (or extract them from nature) to be used as components or raw materials to be 
incorporated in their products. In this logic, a company specializes in a finite group of specific 
products and does not produce a final product (available to the customer or final consumer) from 
raw materials, which draws from nature, because it has all the necessary resources to perform all 
tasks in all phases necessary to obtain the raw material and the final finished product. In the past, 
manufacturing has meant centralized, large-scale processes with long lead times.  
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Distributed manufacturing (DM) is changing the paradigm of manufacturing entirely. It includes the 
concepts of Industry 4.0 and smart manufacturing but adds decentralization to the concept. The 
new concept is enabled by the emergence of cloud-based digital platforms and driven by the need 
of highly flexible, customized and material efficient production167. Distributed manufacturing means 
manufacturing processes that are distributed in several geographically separate but digitally 
coupled locations. 

 The concept relies on digital platforms managing the production to meet supply and demand in 
nearly real time and on sensors and data from production systems to manage the processes and 
manufacturing techniques such as 3D printing to create the products168.Distributed manufacturing 
scenarios have the following key characteristics169:  

 Digitalization – Digitalization is essential in Distributed Manufacturing. It permits a product 
to exist in a virtual form, ready to be physically rendered at any time. This means that it can 
be potentially produced anywhere given the local availability of resources and access to the 
new production technologies. New production technologies, because they can operate at a 
small scale and possess the agility that implies, permit a proliferation in the number of 
production sites, as well as less restrictions on where they might be located. 

 Personalization – Customization and personalization are direct consequences of 
digitalization, which facilitates the modification, both subtle and extensive, of physical 
products. 

 Localization – the greater number of dispersed locations opens up new business models 
and logistics challenges. Together with cloud manufacturing services, it is a precursor of 
resilience, as manufacturing can still take place even if problems occur in particular 
locations or even globally. The emergence of distributed manufacturing is examined as a 
new form of localized production, distinct from previous manifestations of multi-domestic 
and indigenous production. 

 Enhanced user and producer participation – the localized and digital nature of distributed 
manufacturing allows mass customization of products. On the other hand, mixed global and 
local manufacturer supply chains. Also known as collaborative manufacturing, defined as a 
new business paradigm where some companies work together and use their own expert 
competencies to manufacture a product in order to achieve the overall business network 
performances. There are many kinds of collaboration in manufacturing that have been 
implemented by companies for competitiveness (e.g. project planning and scheduling, 
product design and development, forecasting, production systems and supply chains). 

It can be understood as: “technology, systems and strategies that change the economics and 
organization of manufacturing, particularly with regard to location and scale”. Manufacturing 
components in different physical locations and then managing the supply chain to deliver them 
together for final assembly of a product is also considered a form of Distributed Manufacturing. In 
terms of processes and technologies, a core component of a DM system is a focus on advanced 
technological developments (e.g. automation and robotics, additive manufacturing) that could 
potentially enable a much more integrated manufacturing system to be created. 

                                                      

167 https://systemsinnovation.io/distributed-manufacturing-how-it-works/ [Accessed at March 4,  
2021] 

168 Sells, Ed, Zach Smith, Sebastien Bailard, Adrian Bowyer, and Vik Olliver. "Reprap: the 
replicating rapid prototyper: maximizing customizability by breeding the means of production." 
Handbook of research in mass customization and personalization (2010). 
 
169 Srai, Jagjit & Kumar, Mukesh & Graham, Gary & Phillips, Wendy & Tooze, James & Ford, 
Simon & Beecher, Paul & Raj, Baldev & Gregory, Mike & Tiwari, Manoj & Ravi, B. & Neely, Andy 
& Shankar, Ravi & Charnley, Fiona & Tiwari, Ashutosh. (2016). Distributed Manufacturing: scope, 
challenges and opportunities. International Journal of Production Research.  
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6.1. Production Scheduling 
The factory of the future (FoF) is the epicenter of a distribution chain that combines customers, 
suppliers, distributors and partners with advanced analytical systems. This can lead to “perfect 
production” with minimal downtime, neglect, waste and inefficiency. Heizer & Render170, speak not 
only of the importance of innovation but also of the importance of a customer-oriented production 
system, that is, of basing production planning on orders and not on forecasts. For these authors, 
the best way to proceed is to divide the production planning process into three distinct levels, and 
make the best possible decision for each of these levels: strategic planning, tactical planning and 
operational planning. The level of strategic planning concerns long-term decisions that provide the 
company's overall direction. Therefore, the current situation of the company, the goals to be 
achieved and their strategies to be followed must be characterized. Examples of strategic level 
decisions include product design, choice of suppliers, location of facilities, among others171 These 
types of options are reviewed, usually, either between quarters or once a year. These are more 
specific plans than the previous ones, which work in each functional area of the company, serving 
as a kind of link between strategic and operational plans. Examples of such plans include 
purchasing and production decisions, inventory policies or transport policies. The last of the three 
levels of planning is the level of operational planning, which serves as a regulator of day-to-day 
decisions, thus having a short-term planning horizon. Scheduling (scheduling), routing (route 
generation) and truck loading (product loading) decisions are examples of decisions that need to 
be made when a company's operational planning is carried out. 

The scheduling of production can be considered, nowadays, a very studied topic, being focused on 
by several authors172,173. It can be defined a:  

“(…) decision-making process that is used regularly in many manufacturing and 
service industries. It is about allocating resources (machines, processing units, 
crew, and others, depending on the system they are in) to tasks (operations 
performed through the use of resources), in a given time, to optimize one or more 
objectives, which can also take different forms, such as, for example, minimizing 
the total execution time or minimizing the number of tasks that are completed 
after the scheduled date”174.  

Le Pape175, states that given a set of resources with known capabilities, a set of activities with 
known processing times and resource requirements and a set of time constraints between activities, 
a “pure” scheduling problem consists of deciding when to perform each activity, considering the 

                                                      

170 Heizer, J. H., & Render, B. (2006). Operations management. Pearson Prentice Hall. 
 
171 Framinan, Jose & Leisten, Rainer & Ruiz, Rubén. (2014). The Context of Manufacturing 
Scheduling. 10.1007/978-1-4471-6272-8_2. 

172 Toptal, A., Sabuncuoglu, I., & Eguï Toptal, A. (2010). Distributed scheduling: a review of 
concepts and applications. International Journal of Production Research, 48(18), 5235–5262. 
https://doi.org/10.1080/00207540903121065. 

173 Turner, C., Moreno, M., Mondini, L., Salonitis, K., Charnley, F., Tiwari, A., & Hutabarat, W. 
(2019). Sustainable production in a circular economy: A business model for re-distributed 
manufacturing. Sustainability (Switzerland), 11(16). https://doi.org/10.3390/su11164291. 

174 Pinedo, M. L. (2012). Scheduling: Theory, algorithms, and systems: Fourth edition. In 

Scheduling: Theory, Algorithms, and Systems: Fourth Edition (Vol. 9781461423). 
https://doi.org/10.1007/978-1-4614-2361-4. 

175 Artigues, C., Demassey, S., & Néron, E. (2008). Resource-Constrained Project Scheduling: 
Models, Algorithms, Extensions and applications. In F. Sourd (Ed.), CAM - Control Systems, 
Robotics and Manufacturing Series.  
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satisfaction of time and resource constraints. Kendall176 mentioned some of the most common 
objectives in scheduling problems: minimize makespan, which represents the total execution time 
(of the entire process). It is a criterion normally used to measure the level of machines uptime. It 
can be measured by the difference between the instant when the last task finishes processing and 
the instant when the first one starts. 

 Minimize the waiting time for each task (production sequence operations), that is, the time 
it takes since a product is ready to start a task and it starts. 

 Minimize the costs of carrying out the different activities. 

There is the possibility of making certain simplifications, such as, for example, there are no 
restrictions on the availability of components, which are available in zero time. It can also be 
assumed that the machines are always available for the programming period considered, assuming 
that there is only one route available for each product, among others. This makes solving a problem 
quicker and simpler, however, in general, it leads to more modest quality solutions177. 

6.1.1. Key concepts in scheduling 

In all scheduling problems178,, both the number of tasks and the number of machines is considered 
finite, with the number of tasks denoted by N and the number of machines by the letter M. The 
indices i and j refer to specific machines and tasks, respectively, with the pair (i, j) referring to the 
processing stage of the task j (j = 1,…, N) on the machine i (i = 1,…, M).The processing time, Pi,j, 
represents the time to perform the task j on the machine i. The machine index can be omitted if the 
job's processing time does not depend on the machine on which it is performed, or if the task can 
only be assigned to a single machine. Associated with each task, the release and due date, denoted 
by Rj and for Dj respectively. The release date, Rj, corresponds to the time when the task j can be 
started. The due date, Dj, corresponds to the instant when the task must be finished. The latter, if 
not met, may lead to penalties for the operators responsible for carrying out the task in question. 
The weight, Wj, of a task is a priority factor, that is, it is a measure that denotes the importance of 
the task j in relation to the other tasks of the system.  

As far as the concept of parallel machines is concerned, we can have several types of machines 
operating in a given factory. It is considered that the machines operate in parallel, when they are 
identical, any one of them can perform the same operation required by a task. However, even 
between identical machines in parallel, which are designed to perform the same task, more efficient 
machines can coexist than others (with shorter production times). This is an important factor to 
consider when scheduling in that work section.  

Since scheduling problems with parallel machines occur in many real cases, this is a target area 
for many studies. The authors say they are embarking on a sub-area that is not well studied, this 
being the area of production scheduling problems with setup times dependent on the sequence, in 
an environment characterized by machines in parallel and that are not related (that is, not 
necessarily carry out the same operation).  

The precedence restrictions can appear in any factory environment. Makarychev & Panigrahi179, 
state that scheduling tasks using precedence restrictions for a set of identical machines, with the 
aim of minimizing total processing time, is a fundamental problem of combinatorial optimization. 

                                                      

176 Kendall, G. (2005). Multidisciplinary Scheduling: Theory and Applications: 1st International 

Conference, MISTA ’03 Nottingham, UK, 13-15 August 2003. Selected Papers. 

177 Bandyopadhyay, S. (2020). Production and operations analysis: traditional, latest, and smart 
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178 Pinedo, M. L. (2012). Scheduling: Theory, algorithms, and systems: Fourth edition. In 
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179 Makarychev, K., & Panigrahi, D. (2014). Precedence-constrained Scheduling of Malleable 
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Figure 18 - A disjunctive graph problem, (source: https://www.hindawi.com/journals/jam/2012/651310/fig2/, 
accessed at April 28, 2020).  

 

These require that one or more tasks have to be completed before successor tasks can be started 
(see Figure 18). The author defines three types of precedence restrictions, namely: chain; intree 
type; outtree type. The first, in a chain, identify situations in which each task has at most one 
predecessor and one successor. If each task has at most one successor, the intree type precedence 
restrictions are defined. Finally, if each task has at most one predecessor, we are faced with outtree 
restrictions. The last relevant concept concerns recirculation.  

Recirculation is a term that comes up often related to job-shop scheduling, and is therefore 
important180. Recirculation can occur in industries that use the normal or flexible job-shop strategy, 
when a product passes through the same machine more than once during its production process. 
In the case of a flexible job-shop strategy, there is recirculation if a task visits the same work center 
more than once along its route. 

The possible representation of a Job Shop problem could be done through a Gantt chart or through 
a Network representation. Gantt (1916) created innovative charts for visualizing planned and actual 
production. According to Cox, a Gantt chart is, “the earliest and best-known type of control chart 
especially designed to show graphically the relationship between planned performance and actual 
performance”. It measures activities by the amount of time needed to complete them and use the 
space on the chart to represent the amount of the activity that should have been done in that time.  

A Network representation was first introduced by Roy and Sussman181. The representation is based 
on “disjunctive graph model”. This representation starts from the concept that a feasible and optimal 
solution of Job shopping plan can originate from a permutation of task’s order. Tasks are defined 
in a network representation through a probabilistic model, observing the precedence constraints, 
characterized in a machine occupation matrix M and considering the processing time of each tasks, 
defined in a time occupation matrix T. In order to obtain a scheduling solution and to evaluate 
makespan, we have to collect all feasible permutations of tasks to transform the undirected arcs in 
directed ones in such a way that there are no cycles (see Figure 18). 

                                                      

180 Pinedo, M. L. (2005). Machine Scheduling and Job Shop Scheduling. In Planning and 
Scheduling in Manufacturing and Services (pp. 81–113).  

181 Marcello Fera, Fabio Fruggiero, Alfredo Lambiase, Giada Martino and Maria Elena Nenni 
(2013). Production Scheduling Approaches for Operations Management, Operations 
Management, Massimiliano M. Schiraldi, IntechOpen. 
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6.1.2. Approaches 

Pinedo defines several scheduling classes motivated, in turn, by three concepts, namely: the 
sequence, the plan and the scheduling policy. Sequence, normally, corresponds to an ordering 
between a certain number of tasks or else the order in which the tasks must be processed on a 
given machine. The plan usually corresponds to the allocation of tasks to a given set of machines, 
at certain times of time. Finally, the scheduling policy appears in scenarios of stochastic 
configurations, and aims to "prescribe" the most appropriate action for all states in which the system 
can be found. Deterministic models only consider the sequence and the plan. Thus, the first 
scheduling class, the Non-Delay Schedule, appears when there are free machines whenever an 
operation needs to be processed (see Figure 19).This scheduling class prohibits unforced idleness. 
The second class is the active scheduling that is imposed when it is not possible to build another 
scheduling, through changes in the order of the processes on the machines, which lead to at least 
one operation to finish earlier and none to finish later than in the start scheduling. The third and last 
class is that of semi-active scheduling. This class identifies escalations in which no operation can 
be completed earlier without changing the processing order on any of the machines. 

 

Figure 19 - Gantt example chart of semi-active non-delay and active schedule (Luo, Hao 2013). 

Different strategies can be used to schedule production activities, and their application leads to 
processes with different structures and characteristics. These structures are instigated by the 
choice of strategy, and range from the project to the flow-shop, through the job-shop and batch, for 
example. The two main strategies that can be used, which are at opposite points in terms of 
differences in features and structure, are the job-shop and the flow-shop. In several production and 
assembly facilities, each task has to subject to a series of operations, and often, these individual 
operations have to perform in the same order of execution12. In this case, it can be said that all 
tasks have to follow the same route. It is then assumed that the machines are placed in series, and 
the surrounding work environment is referred to as flow-shop. Graham Kendall8, with a similar 
opinion, defined the flow-shop strategy as a linear structure in which the different machines are 
organized in series of operation / task.  

Thus, there is an initial machine where the operations begin, then going through several 
intermediate machines until they reach the last one, where the process is completed. The fact that 
the structure is linear does not imply that operations have to use all available machines, that is, an 
operation can start by using the first machine and then going to the third without going through the 
second. The main characteristics of this type of strategy: (a) High standardization and speed; (b) 
Reduced material handling; (c) Flows with short periods of time; (d) Reduced unit processing costs; 
(e) High investment costs and mass production needs; (f) Specialized equipment and low skilled 
workers; and (g) Prevents flexibility. The authors generalize the flow-shop strategy, adding this type 
of scheduling to an environment characterized by parallel machines. Here, instead of series 
machines, phases / stages are defined in series, and each of these steps requires a certain number 
of machines in parallel. The steps must respect a pre-defined order, and each task is performed by 
only one of the machines belonging to each step, and all machines that are within the same phase 
can perform the task for which this phase is intended.  
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When the routes are fixed, but are not necessarily the same for each task, the model is called job-
shop. This model has the advantage of admitting a phenomenon, common in the real world, known 
as recirculation, that is, when a task has to pass through the same machine more than once before 
the process is completed. This strategy requires defining the order of the set of operations for each 
machine, that is, finding precedence conditions between operations182. For the authors, the job-
shop strategy does not have the same flow restrictions as the previous, flow-shop strategy. In this 
case, operations can be performed on the machines in any order.  

Also, we can highlight, the main characteristics of this strategy: (a) Wide variety of customized 
products; (b) Flexible features; (c) specialized human resources; (d) “Mixed” flows; (e) High material 
handling; (f) High inventories; (g) High flow times; (h) Highly structured information systems; and (i) 
High costs per unit of product but investment is low. The Figure 20 compares through a graphical 
representation, a flow-shop strategy with a job-shop strategy. In this it can be seen that while in a 
flow-shop strategy all products execute the same type of route (in the same direction), and may not 
just go through all machines, in the job-shop strategy there is a route that has the opposite direction, 
or that is, routes are customized to products. 

 

Figure 20 - Illustration of two modes of processing: flow shop and job shop (source: 
http://www.rvholon.cimr.pub.ro/distrib_prod.html, accessed April 28, 2020). 

In the flexible job-shop strategy, there is a mix between the job-shop strategy and environments 
with parallel machine. Instead of serial machines, there are a number of work centers, each 
containing a number of identical machines in parallel. In this case, each task has an associated 
route and has to be processed in all work centers, but in only one of its machines, and all machines 
in a given center can perform the task to which the product must be subjected. 

 

Figure 21 - - The new “vision” of productive capacity (source: X-CITTIC, 1997). 

A third possible strategy, is the open-shop. In this strategy, each task has to be processed on each 
of the available machines (in which n jobs must be executed once at each of the c ≥ 2 stages (or 
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(Eds.), Genetic algorithms in engineering systems. The Institution of Electrical Engineers. 



 

State-of-the-Art on FoF Optimization 
Date 03.03.2021 

 

CyberFactory#1  |  www.cyberfactory-1.org 74 

 

machine centers without interruption)183. A stage consists of a number of parallel machines, and at 
least one of these stages includes more than one machine. A job has to be processed at each stage 
by using only one of the machines. The sequence of each stage that processes jobs and the route 
of each job passing through the stages can be chosen arbitrarily. The objective is to find a schedule 
that simultaneously determines machine processing orders and job visiting routes to optimize some 
criteria, such as makespan or total completion time (see Figure 21).  

“In an open shop, a set of jobs has to be processed on m machines. Every job 
consists of n operations, each of which must be processed on a different machine 
for a given processing time. The operations of each job can be processed in any 
order. At any time, at most one operation can be processed on each machine, 
and at most one operation of each job can be processed. Moreover, every job 
has a release date, only after which the operation of that job can be processed.”14  

In the various production environments, mentioned previously, not only the number of resources 
and their disposition can vary. There are other additional features that can make a problem more 
complex, as described on Table 3. 

Table 3 production scheduling constraint additional features 

Additional feature Description 

Failure Interruption The process of executing a job can be interrupted and it can be 
finished later and even on another machine or equivalent production 
resource. In the case of parallel machines, the same job can even 
be performed on two different machines. 

Machines Availability There may be several reasons why a machine is found unavailable, 
and such situations are required to consider when production 
scheduling. Not only can the machine be unavailable due to the 
allocation of other jobs, there may be a breakdown or maintenance 
period. Periodic maintenance, despite creating periods of machine 
downtime, reduces unexpected downtime caused by breakdowns. 

Associated Priorities 
or Penalties 

Associated with each job there may be a value that can mean a 
priority (urgency with which the job must be done), or a penalty (lost 
value if its execution does not correspond to the delivery time). The 
penalty may also Associated with advancing the performance of a 
work a certain amount, which may be the associated cost (for 
example, costs associated with storage) or symbolic, but it leads to 
the work being carried out as close as possible to the date of 
delivery. The arrival of high priority jobs in the system can lead to a 
particular machine being interrupted, being an unexpected situation 
that, like malfunctions, lead to the reorganization of the scheduling 
plan. 

Precedence 
Constraints 

The processing of a job may depend on the execution of another 
one, that is, a job can only be executed when the other one finishes 
its execution. When there is a dependency relationship between 
jobs, they are considered dependent jobs. This dependency may be 
due to a more complex job being able to be divided into several tasks 
or activities and these have to be carried out in a certain order184. 
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184 Kozik, A. (2017). Handling precedence constraints in scheduling problems by the sequence 
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Machine Setup Time The time to prepare the machines (setups) is important to consider, 
as this can be dependent on the sequence of jobs, that is, the setup 
between jobs can vary depending on the jobs in question. The 
existence of setup times for machines (setups), can also vary 
depending on the resource, in the case of uniform parallel machines 
or unrelated parallel machines, also being a factor to be considered 
in the scheduling. 

Auxiliary Resources The auxiliary resources can be the most varied, ranging from tools, 
fixing devices and manipulators to human operators who assist the 
main resource. There may also be a need for these to be considered, 
for example in the allocation of human operators or subcontracting 
period. 

At this point, two concepts are distinguished that often appear in approaches to scheduling 
problems: simulation and optimization. Other important concepts are also relevant, such as dynamic 
and stochastic programming, and discrete and continuous time models. 

Simulation can be seen as a methodology, which has been widely studied, and which emerges 
with the aim of developing new tools and improving existing ones, so that they can represent and 
solve various problems more effectively and efficiently, as is the case of production scheduling185.  

One of the main problems of this methodology is related to the simplifying hypotheses introduced 
by the users in order to reduce the simulation time and the complexity of the system. This procedure 
can lead to results that are not as accurate as they should be. As already mentioned, another 
method of dealing with the complexity of the system is to work on a higher level of abstraction which, 
in turn, can also have negative impacts. Often, the lower level details of the system can be 
overestimated or even forgotten, which compromises information and makes the system unable to 
be implemented in reality.  

Optimization is one of the main tools used to solve scheduling problems186,187. Operational 
Research is applied to problems that aim to conduct and coordinate the operations that take place 
within an organization. For these authors, optimization appears as a characteristic of Operational 
Research, since it often tries to find an optimal solution (not "the optimal solution" since there may 
be several solutions considered alternatives) for the target problem of the study.  

In other words, the objective is to identify an action plan, among a set that includes the best possible 
action plans. We can assume that optimization is defined as a mathematical discipline that involves 
finding the minimum or maximum of functions that are subject to restrictions, therefore involving 
mathematical formulation. Today, optimization contains a wide variety of Operational Research, 
artificial intelligence and computer science techniques, and is used to improve business processes 
in virtually all industries188. 

6.2. Distributed Production Scheduling 
In the course of globalization, many enterprises change their strategies and are coupled in 
partnerships with suppliers, subcontractors and customers. This coupling forms supply chains 
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comprising several geographically distributed production facilities. Production planning in a supply 
chain is a complicated and difficult task, as it has to be optimal both for the local manufacturing 
units and for the whole supply chain network189. In the production and distribution environment, 
there are companies that have physical resources used to produce, transport and store products. 
In this sense, a company is an autonomous entity (with decision-making capacity and own actions), 
which owns and exploits resources, with the objective of making specific products available to other 
companies, or to the final consumer. In this form, the company will depend on others corporate 
customers, who consume their products and suppliers, which supplies the company, the products 
it consumes.  

This interrelationship between enterprises is an important aspect to be considered. Another equally 
important aspect is the geographic decentralization. By diminishing restrictions to international trade 
and compliance the standards and laws, any product can be sold widespread. The same can be 
stated with production/manufacturing since the means of production are increasingly accessible 
anywhere in the globe: it is common practice, products to be developed in one site/country, 
engineering of the production process carried out in another, and production in yet another. 

6.2.1. Definition 

For the production and distribution of most of the tangible goods it is necessary to have a network 
of coordinated activities. Traditionally, there are two basic models, according to which these 
activities can be classified: the market and the hierarchy190. In a market model, there are groups of 
experts who negotiate with each other in an open market. They agree on prices and establish 
contracts with each other, which normally limit mutual obligations for a certain period of time. After 
this period, they are free to associate with other specialists. On the other hand, the hierarchy model, 
the network of activities, is contained in a hierarchical command structure. the flow of products is 
planned centrally, and there is no competition or redundancy in the structure.  

With the globalization of markets and the pressure of competition, mainly small and medium-sized 
companies are forced to specialize, cooperate, plan and control their activities in a coordinated way, 
organizing themselves in supply chains. This leads to a decrease in response times, given the 
consumer's needs. The trend is towards greater coordination and integration of the activities of 
these players in the value chain, both in terms of configuration and control191, which are increasingly 
supported by ICT.  

The evolution of these support technologies helps in the transformation of products, processes, 
companies and competition between companies. Currently, most of the production processes are 
performed by a network of multiple companies. previously limited typically to particular domains of 
business, as is the case of the automotive industry, the organization in a cooperative network, is 
today a trend that has become widespread and extended to other domains, covering production, 
distribution and services. However, it is noted that concerning the coordinated planning of logistics 
activities in the production and distribution network, there are interesting studies from the middle of 
the 20th century192. Even so, only more recently, in the 90s, attention has been given to the problem 
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of escalation in decentralized contexts. Toptal193 defines distributed scheduling  as “an approach in 
which smaller parts of a scheduling problem are solved by local decision makers who possibly have 
conflicting objectives and who coordinate their sub solutions through certain communication 
mechanisms to achieve overall system objectives”.  

Cooperative production and distribution network presuppose a group of companies linked by 
customer-supplier relationships, which perform production and distribution activities (acting as 
suppliers, producers, distributors and retailers), cooperating in placing a product or final products 
on the market. The cooperative network nodes correspond to specialized companies, which perform 
various types of tasks, phases or stages (of production, storage, transport) complementary to the 
production and distribution process. By specializing their skills and organizing themselves in 
cooperative networks, companies can obtain competitive advantages over the so-called monolithic 
competition, as they can share technical and commercial information, act in a coordinated way in 
the introduction of new products, reduce costs that arise from the need security in the face of their 
uncertainty, and reduce response time in the face of variable demand. the objectives of the network 
can be generically translated by the maxim of logistics: placing the right product and quantity at the 
right time and place194. 

The organization of companies in cooperative networks combines the advantages of both models 
of organization, market and hierarchy195. On the one hand, the cooperative network is a relatively 
durable, less volatile and transient organization than contracts negotiated at frequent intervals 
between participants in a market model. It, therefore, allows for greater planning and control, but 
avoids the inertia and rigidity of this model (e.g. Figure 22).  

It facilitates competition and price transparency, which characterizes the market model, avoiding 
adversity and reduced vision originating in the market context. This combination, together with the 
support of ICT, is at the origin of management paradigms such as Rapid Response, Accurate 
Response, Integrated Supply Chain Management, Agile Production, Virtual Company, and 
Extended Company196. 

                                                      

193 Toptal, A., Sabuncuoglu, I., & Eguï Toptal, A. (2010). Distributed scheduling: a review of 
concepts and applications. International Journal of Production Research, 48(18), 5235–5262.  

194 Benoit Lung, & Laszlo Monostori. (2007). Manufacturing scheduling and control in the 
extended enterprise. In Marco Taisch, Klaus-Dieter Thoben, & Marco Montorio (Eds.), Advanced 
Manufacturing. An ICT and Systems Perspective. 

195 Víctor Fernández. (2012). Modelling And Optimization Of Flexible Manufacturing Systems. 
Bragança. 

196 Eyob, E., & Tetteh, E. G. (2012). Customer-oriented global supply chains: Concepts for 
effective management. In Customer-Oriented Global Supply Chains: Concepts for Effective 
Management.  
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Figure 22 – example schema of decentralized decision support for intelligent manufacturing in Industry 
4.0197. 

To be successful, a company must consider the reduction of response times, in addition to 
increasing the quality and flexibility of its products/services. This concern must be linked to all 
iterations of the business process, and not only within their organizational boundaries but in the 
industry's supply chain. There must also be a measure, not only the coordinated production and 
distribution of products but also the cooperative development of new products (e.g. Extended 
Company, or Virtual Company models)198,199. 

The extended company is defined as a configurable and transversal fusion of the business 
processes of different business units, to form a system that places certain products on the market. 
This system is a network whose nodes are specialized companies, acting simultaneously as 
customers and suppliers, where coordination is ensured through inter-company communication, 
supported by electronic networks and ICT resources. This concept is applied to production or 
service business units, which are geographically distributed, capable of operating as a controlled 
and planned system for making products/services available on the market. According to this model, 
the coordination of tasks must be ensured by a supervisory unit, connected to all nodes in the 
network (it is a team where each company involved is represented).  

It acts as a virtual node or network coordinating agent that integrates the individual perspectives of 
the nodes, from a global perspective of the network. It presupposes an infrastructure that enables 
fast communications and the sharing of common data, necessary for coordination. In the context of 
the project, it can be assumed that a scaling environment is one, in which there is a multi-product 
production and distribution network (with multiple end products), whose activities are coordinated 
by an extended company. Each of the nodes in the production and distribution network can deliver, 
or make available, a finite set of products, at the expense of the consumption of certain materials 
or components, performing production and distribution tasks (production, storage or transportation). 
nodes are macro-resources that correspond to factories, warehouses or transport units, whose 

                                                      

197 Marques, Maria et al. ‘Decentralized Decision Support for Intelligent Manufacturing in Industry 
4.0’. 1 Jan. 2017: 299 – 313. 

198 Benoit Lung, & Laszlo Monostori. (2007). Manufacturing scheduling and control in the 
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capacity is managed in a coordinated manner, by the participating companies of the extended 
company.  

These entities may be different departments in a company, cells in a flexible manufacturing system, 
multiprocessors in a communication network, or companies in a supply chain200. Decision making 
in such a distributed manner increases system responsiveness, which may be especially important 
for scheduling. Scheduling as a short-term decision-making process requires up-to-date and timely 
information to generate feasible schedules in practice. 

6.2.2. Approaches 

The proliferation of cyber-physical systems introduces the fourth stage of industrialization, 
commonly known as Industry 4.0. The vertical integration of various components inside a factory to 
implement a flexible and reconfigurable manufacturing system, i.e., smart factory, is one of the key 
features of Industry 4.0201.Smart factories are being shaped into smart shop-floors (i.e. powered by 
context-awareness), with autonomous agents (i.e. smart objects) and the scheduling activity of 
logistical tasks is seen from the perspective of the Multi-Agent paradigm, of Distributed Artificial 
Intelligence202.  

This activity involves a multi-agent coordination system, in which the agents cooperate to achieve 
joint objectives and meet the final demand over time, respecting capacity restrictions and 
scheduling schedules. However, there is space for competitive scheduling activity: agents will be 
able to compete in meeting individual scheduling goals or preferences. This philosophy is more 
similar to human professional relationships, in which each employee has their own goals, but knows 
that to achieve them, they will have to work collaboratively. In this way, the company's transversal 
objectives are met in the best possible way, with little supervision effort (e.g. in cases of inter-agent 
conflicts). Two levels can be classified in this context: 

 The level of physical resources, gear by the production and distribution network. This 
network contains nodes (the macro resources), interdependent due to customer-supplier 
relations and specialized in logistical tasks of production, storage and transportation. To 
satisfy orders, or orders, tasks are created from abroad, to be staggered at the network 
nodes. A group network process is a group of tasks linked by time precedence links, which 
come from customer-supplier relationships between nodes. the scheduling of a task on a 
node occurs by affecting the capacity of the node to the task in a given time interval. Each 
node has a limited capacity (production, storage or transport) to affect tasks. At this level, 
physical product flows occur. 

 The decision level, made up of cooperating agents. These agents represent the companies 
participating in the Extended Company and generate the capacity of the nodes in the 
production and distribution network. Each agent is in charge of managing the capacity of a 
network node. Customer-supplier relationships between nodes are extended to agents: an 
agent is both a supplier and a customer of other agents, with whom he can communicate. 
Each agent can receive orders from client agents. To satisfy requests, the agent schedules 
the appropriate tasks on the node he manages. In addition, the agent sends the appropriate 

                                                      

200 Víctor Fernández. (2012). Modelling And Optimization Of Flexible Manufacturing Systems. 
Bragança. 

201 Mourinho, J., Leiras, F., Correia, R., Fernandes, M., Conceição, L., Praça, I., & Marreiros, G. 
(2018). A Vertical Predictive Maintenance Approach for Manufacturing 4.0. In J. T. Farinha & D. 

Galar (Eds.), Proceedings of Maintenance Performance Measurement and Management (MPMM) 
Conference (pp. 2–9). FCTUC-DEM. 

202 Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic, Game-Theoretic, 
and logical foundations. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical 
Foundations, 9780521899, 1–483.  
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orders to supplying agents, to ensure the necessary supplies to perform the tasks. At this 
level, information flows occur. 

In this concept of distributed scheduling, it is a generalization of the problem of conventional 
scheduling, with decentralized scheduling activity (represented by agents) and inter-agent 
communication. Therefore, decisions are not attributed to a single central agent, but distributed to 
a set of agents with an inference / decision capacity, each with the ability to decide on a single 
resource. additionally, and to avoid deadlocks203, they communicate with each other to coordinate 
decisions. 

6.2.3. Testing data integrity 

Distributed production scheduling is dependent on accessible data networks with high level of data 
integrity to ensure the scheduling is not hindered by technical problems in the underlying network 
structure. Current network trends show a tremendous increase in network speeds due to the 
growing number of connected devices and the increase of data and video traffic. At the same time, 
the percentage of encrypted traffic grows and is up to 85% in 2020. Encryption increases the 
confidentiality level of the data transmitted over the networks, however, at the same time it 
increases the complexity of inspecting the traffic for security risks. Combined with the high network 
speeds, the encrypted data traffic puts a high strain on security tools. Due to this, only a handful of 
security tools can manage the task of inspecting encrypted traffic in high data speeds204. 

The standard IEEE 802.1ae that defines MACSec was initially released in June 2006 and has been 
updated several times; latest update is currently from 2018205. MACsec protocol header format is 
shown in Figure 23204. 

 

 

Figure 23 - MACsec protocol header format 206. 

MACsec is used to provide point-to-point security on Ethernet links and it is defined by IEEE 
standard 802.1AE. MACSec operates by performing link layer encryption for each hop through a 
network. To provide end-to end security, it is often used in connection to other security protocols, 
such as IP security IPsec and Secure Socket Layer. What makes MACsec important, is its capability 
to identify and prevent most security threats. It secures an Ethernet link for more traffic than what 
most other security solutions are able to, including frames from Link Layer Discovery Protocol, 
Dynamic Host Configuration Protocol, Address Resolution Protocol, and others protocols207.  An 

                                                      

203 Toptal, A., Sabuncuoglu, I., & Eguï Toptal, A. (2010). Distributed scheduling: a review of 
concepts and applications. International Journal of Production Research, 48(18), 5235–5262. 

204 https://www.fortinet.com/blog/industry-trends/keeping-up-with-performance-demands-of-
encrypted-web-traffic [Accessed at February 14, 2021].  
 
205 https://tools.ietf.org/html/rfc2544 [Accessed at February 8, 2021]. 

 

207 https://www.juniper.net/documentation/en_US/junos/topics/concept/macsec.html [Accessed at 
February 14, 2021]. 
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important advantage of MACsec over other security protocols, namely IPsec, is its minimal impact 
on network performance. The overall throughput of a network router is limited by the performance 
of the IPsec engine, while a required link speed can be realized when using MACsec encryption208. 
Another driving factor between the shift from IPsec to MACsec is the change in traffic patterns to 
any-to-any model, which is dictated by cloud, machine-to-machine (M2M) communications and the 
internet of Things (IoT). 

Due to these network trends and risks, it is necessary to test the network functionality and the 
capability of the installed security elements to ensure data integrity. At the same time, due to the 
high strain of CU usage posed by the encryption/decryption, MACsec is only now emerging in 
network testing solutions aimed at high-speed networks. These solutions are required for network 
engineers fully test networks for the MACsec design and implementation to ensure quality and 
performance of the network deployment209,210. 

6.3. Market Solutions 
In order to manage a large-scale production operation, control software is needed.  ERP (Enterprise 
Resource Planning) systems are used to manage the overall running of the company, and they are 
linked to MES (Manufacturing Execution System) systems to support manufacturing scheduling. 
The available MES systems provide a variety of features to support setting up, managing, execution 
and costing of production operations. There are MES systems available that support discrete 
manufacturing and options for process manufacturing. 

There are several widely used solutions on the market, provided by well-known established 
companies catering to the needs of multiple types of manufacturing operations117.  As distributed 
manufacturing is a new and upcoming concept, the needs for it may vary from those of traditional 
manufacturing technologies. Traditionally, the overall manufacturing process happens within a 
single factory, although components and sub-assemblies may be sourced from suppliers. The 
overall process is oriented for mass production. However, distributed manufacturing is defined by 
decentralizing the manufacturing process, often shorter production cycles and more customized 
products118.  

Table 4 Available MES software's and their corresponding websites 

Product Website 
Industry 4.0 
mentioned 

Mastercontrol mastercontrol.com No 

Aegis FactoryLogix aiscorp.com No 

Infor Cloudsuite Industrial infor.com/products/cloudsuite-industrial Yes 

Simio simio.com Yes 

Parsec TrackSys parsek-corp.com Yes 

Pinpoint pinpointinfo.com Yes 

                                                      

  
208https://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Security/MACsec/WP-High-
Speed-WAN-Encrypt-MACsec.pdf [Accessed at February 14, 2021]. 
 
209 https://www.keysight.com/fi/en/assets/3120-1442/data-sheets/IxNetwork-MACsec-Test-
Solution.pdf [Accessed at February 12, 2021]. 
 
210https://assets.ctfassets.net/wcxs9ap8i19s/2YiuYFjn66PWMfptZBLauU/296f7ed827098cd8a6b
b986469a0dc3b/Landslide_C100-M4_datasheet.pdf [Accessed at February 10, 2021]. 
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A key requirement for smoothly coordinating a distributed, decentralized manufacturing system is 
detailed real-time view of the production processes, in-process data and resulting quality measures. 
The data from across the production system must be accessible from all locations, requiring cloud-
based access to the data.  

The system needs to be flexible to enable co-operation between sites and accommodate for plan 
adjustments to suit the changing conditions and requirements. The system must readily support 
geographically distributed multiple plants and production locations and it must be compatible to be 
integrated with other existing manufacturing and business systems. The system must also support 
shorter production cycles119. According to a study120, most current systems do not support a 
distributed manufacturing system15. The table 4 lists a number of key MES suppliers and their 
capabilities in regards to the key requirements of distributed manufacturing. 

6.4. Safety assurance for adaptive SoS 

6.4.1. Definition 

Adaptive SoS are getting more popular due the rapid changes in the industry and their application 
domains. This is particularly due to their capability for reconfiguration at run time, facilitating more 
autonomy and reacting more flexible to the changes either in the SoS or in its context. Examples 
for such adaptive SoS are networks of collaborating machines and transport robots or AGVs in 
factories of the future. Adaptive SoS are able to react onto internal and external changes, adapting 
their member systems and reconfiguring the relations between these. Reconfiguration in such 
example can be applied with the goal of optimization techniques aiming to improve the efficiency of 
FoF. 
 
Ensuring continued safety for adaptive SoS is challenging, because either the multitude of relevant 
configurations must be assessed at design time, or assessment must done dynamically at run time. 

Adaptive SoS are usually consist of autonomous systems which can decide to be part of the SoS 
and to build a dynamic connectivity as well as to benefit from cooperation within the SoS, in order 
to achieve greater fulfillment of their own goals, along with the higher SoS goals211. 

Each individual system may be seen as a Cyber-Physical System and their integration as a Cyber-
Physical System of Systems212. In such systems, a reconfiguration is the process of changing an 
already developed and operatively used system in order to adapt it to new requirements, to extend 
its functionality, to eliminate errors, or to improve quality characteristics. 213 

Reconfiguration is divided in two methods, which we could define as programmed and ad-hoc 
reconfiguration. Programmed reconfiguration is predefined at design time. In contrast, ad-hoc 
reconfiguration creates higher flexibility, because the system generates possible configurations at 
run time. Yet, from an assurance point of view, this method is far more challenging214. 

                                                      

211  Boardman, J., Sauser, B.: System of Systems - the meaning of of. In: 2006 IEEE/SMC 
International Conference on System of Systems Engineering, Los Angeles, California, USA, 24–
26 April 2006. IEEE (2006).  
 
212  Ferrer, B.R., et al.: Towards the adoption of cyber-physical systems of systems paradigm in 
smart manufacturing environments. In: 2018 IEEE 16th International Conference on Industrial 
Informatics (INDIN), Porto (2018). 

213  Matevska, J.: RekonFiguretion komponentenbasierter Softwaresysteme zur Laufzeit. 
Vieweg+Teubner Verlag/Springer Fachmedien Wiesbaden, Wiesbaden,Wiesbaden, Wissenschaft 
(2010). 

214  Batista, T., Joolia, A., Coulson, G.: Managing dynamic reconFiguretion in component-based 
systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 1–17. Springer, 
Heidelberg (2005). 
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There are three levels of flexibility regarding the selection of new configurations in adaptive SoS215. 
 

1. Predefined Selection: Once a dynamic change is initiated, the system chooses a configuration 
based on a predefined selection made at design time. 

2. Constrained Selection from a predefined set: Suitable configurations are defined at design time 
in relation to given situations or system states. Once a dynamic change is initiated, the system 
will select the most appropriate configuration from the set of configurations that matches the 
current situation. 

3. Unconstrained Selection: Once a dynamic change is initiated, the system may choose freely 
from a multitude of possible configurations, or even generate new configurations at run time. 
 

From the safety perspective, the development of adaptive SoS with programmed reconfiguration is well 
supported by design-time assurance methods. However, the complexity of covering all potential 
configurations of the SoS at design time poses a major challenge to these methods, and 
unconstrained selection cannot be handled purely with design-time assurance methods.  
In particular, the openness of adaptive SoS and the dynamic nature of the relations between their 
members make it impossible to foresee and assess all relevant configurations, unless one strongly 
restricts the selection flexibility. Alternatively, safety assurance at run time appears as a suitable 
means to master this challenge, because it could help to restrict the assurance effort to assessing 
only those configurations which are relevant in a certain reconfiguration situation.216. 

6.4.2. Approaches 

Safety Cases are one important assurance approach to be considered in this context. The UK 
Defence Standard 00-5217 defines a safety case as “a structured argument, supported by a body of 
evidence, which provides a compelling, comprehensible and valid case that a system is safe for a 
given application in a given environment”. 
 
Originally, the safety case methodology was developed to support safety assurance during design 
time. In order to be truly applicable for adaptive systems of systems - that emerge and change 
structurally at run-time, and those constituents change at run-time, too - safety case smust be 
modular and adaptive, too. Different approaches have been developed throughout the years to 
address modularity and dynamicity for safety cases. The approaches described in literature support 
several aspects of what is required for safe reconfiguration in adaptive systems of systems, but 
none of them seems to cover all required elements218. 
 
The key elements of safety cases based on this definition are: 

• Claims, defining properties of the system. 
• Evidences, used as the basis of the safety argument, being facts, assumptions or sub-
claims. 
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217  Ministry of Defence: Defence Standard 00-56: Safety Management Requirements 
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• Arguments, linking evidences to claims. 
• Context, being the environment in which all these safety analysis and arguments are valid. 
 

Traditionally, most people were using textual notations to define safety cases. As structuring of the 
arguments for complex system became challenging, graphical notations were developed supporting 
the safety case development. In general, there are different notations supporting structuring the 
arguments to associate the evidences to the claims. Two of the most popular ones are: 

• Goal Structuring Notation (GSN)219. 
• Claim-Arguments-Evidence220. 

GSN well supports capturing the underlying rationale of arguments. This helps to scope areas 
affected by a particular change and thus helps developers to propagate the change mechanically 
through the goal structure. However, GSN do not tell if the suspect elements of the argument in 
question are still valid. Hence, using GSN does not directly help to maintain the argument after a 
change, but it helps to more easily determine the questions to be asked to do221. 
 
The basic idea in all these structuring approaches is very simple: In many cases, in order to make 
a claim about a property of an object, we need to investigate whether the object has this property 
by evaluating its components. To do this, we need to clarify what the property is, what the rules are 
regarding how to view the object as being composed of components, and how the properties of 
these components can be combined (i.e., how reliability properties of components are combined 
when the degree of independence is not known)222. In general, understanding, developing, 
evaluating, and maintaining safety cases is a non-trivial task due to the volume and diversity of 
information that a typical system safety case must aggregate when best engineering practice is 
followed 223. 

6.4.3. Limitation of current approaches 

The complexity and flexibility of these SoS necessitates the development of new approaches to 
analyse and maintain safety. One approach to address this challenge could be identifying safety-
related system variables at design time, monitoring them at run time, and analyzing their variation 
for prospective configurations during the configuration selection process. However, this is not yet 
sufficient to cover completely unconstrained selection, since this approach focuses on known 
variables of known systems. In a truly unconstrained selection, we will not only see parametric 
changes to existing variables, but also structural changes. For this, we need a dynamic approach 
that also can dynamically compose and assess safety cases at run time. 
 
The basic safety case concept has evolved over the years, and has led to amendments and 
extensions such as the modular safety case (MSC) approach, and the dynamic safety case (DSC) 
approach. MSC, in particular was introduced to cope with the system complexity by breaking down 
safety arguments into modules, in order to reduce cost and impact of changes during the system 
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life-cycle, whilst DSC were developed to bridge the gap between assumptions taken during design 
time and properties of the realized system becoming apparent during run time. 

There are many methods supporting DSC and many approaches for MSC. However, there is a lack 
of focus in combining the two approaches addressing the above-mentioned challenges as well as 
benefiting of both method’s assets. A combination of both approaches in the sense of “Dynamic 
Modular Safety Cases” could be a good solution. 

We explored the current state of the art of MSC and DSC and discussed the application of these 
approaches for dynamic reconfiguration of SoS. We examined their application in two different life-
cycle phases at design time and at run time to identify the unexploited features and properties of 
these approaches in both phases. The limitations of the MSC and DSC approaches for dynamic 
reconfiguration of adaptive SoS necessitate combining the two methods into an approach called 
Dynamic Modular Safety Cases to cope with the challenge of unconstrained selection during 
reconfiguration at run time and benefiting from both method’s assets224. 

6.5. Limitations of Current Approaches and Solutions 
Production scheduling is the base of distributed manufacturing. Distributed Production scheduling 
approaches can be broadly applied to several other problems of distributed manufacturing, for 
example, to the use of different types of resources beyond production equipment’s, such as 
automatic guide vehicles (AGVs) for the transportation of goods or community-based production225. 
In all the cases, however, there is a set of common characteristics of distributed manufacturing: 
personalization, localization, new enabling technologies and enhanced user and producer 
participation.  

Limitations of current approaches on production scheduling are related to its inability to extract the 
maximum value of the distributed manufacturing characteristics. Current production scheduling 
systems are based in the traditional operations research-derived approach, based on an 
optimization functions and a set of constraints. These constraints must be known upfront. It is based 
on certain assumptions or forecasts about the availability of assets or materials or customer orders. 
In highly dynamic and responsive SoS systems such as distributed manufacturing systems, the 
information changes frequently. Currently, systems try to cope with system dynamics through 
sensitivity analysis (providing optimal intervals for optimality). Nevertheless, highly dynamic 
systems can go out of the bounds of the sensitivity analysis and render the scheduling plan 
suboptimal. Comprehensive production scheduling is often a highly dimensional problem and the 
search space for optimal solutions can be a problem as it takes a considerable processing time to 
achieve optimal solutions.  

This becomes a more complex problem, if mass customization needs are addressed, where 
individual orders and preferences are integrated into the problem, potentially exploding the search 
space, due to the highly combinatory nature of the problem. The known approaches are also rigid, 
producing rigid solutions, and last-minute or unpredicted changes are difficult to accommodate. For 
example, if one AGV or equipment fails, the scheduling process needs to be restarted, being time 
consuming. Additionally, the scheduling process is a top-down, centralized decision-making 
process. This is not adequate to modern distributed manufacturing organizations which function as 
a SoS, where decentralized decision making is needed to ensure resilience.  

Current approaches are unable to support dynamic real-time negotiation between systems nor 
decentralized decision making. Overcoming the problems mentioned implies evolving the current 
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scheduling models to fully support the aforementioned characteristics of distributed manufacturing. 
With such dynamic environments, the constraints to the production scheduling are not fully known 
upfront. Therefore, there is the need to feed improved information quality to reduce uncertainty to 
the scheduling models. This will be achieved by making use of machine learning and cognitive 
analytics to enhance prediction, increase the efficiency of the scheduling models and to derive the 
best decision.  

As an example, AGV fleet requests can be forecasted using regression models and other machine 
learning techniques, so the AGV fleet can be prepared to deal with potential demand peaks, thus 
reducing bottlenecks and improving overall efficiency. The behavior of the system components – 
the equipment availability, the human factors, the goods availability and quality can be forecasted 
and fed into the scheduling models, increasing their effectiveness and decision quality. The state 
of the art also proposes several solutions to decrease the search space, either with branch-and-
bound techniques, tree pruning, metaheuristics (e.g. GRASP, Tabu Search).  

The potential search space explosion can also be prevented by designing new type of algorithms 
that instead of trying to produce a complete scheduling plan, produce several incremental plans. In 
highly dynamic environments such as multi-location manufacturing organizations with complex 
product mixes, the information available changes fast. This means that uncertainty is higher in the 
beginning of the scheduling plan processing. Therefore, the produced solution may be quickly 
rendered suboptimal due to the inherent dynamics of the system.  

A new type of algorithms that are real time, lighter processing and have a distributed nature are 
required. They should not provide a complete scheduling plan but deliver incremental results and 
can process information arriving in real time is needed instead. Current scheduling algorithms are 
also highly centralized and “top-down”. 

Cloud manufacturing, big data and collaborative manufacturing processes are used as tools or 
resources through platforms to attain the objectives of improved efficiency, reduced lead time [2] 
and reduced total cost, along with maximum mutual profit precisely and easily in a networked 
manufacturing system226.  

Cloud services in manufacturing (CMfg) represent an evolution of networked and service-oriented 
manufacturing models that comprise a set of reconfigurable and interchangeable items on the 
factory floor, and can access a shared set of computing devices according to cloud computing (CC) 
principles, in which case CC is part of the CMfg model at the IaaS (Infrastructure as a Service) 
abstraction level227. 

To overcome traditional manufacturing problems (i.e., the monolithic approach has its advantages, 
but it is not sufficient in today's dynamic manufacturing environment), it is necessary to integrate 
both functions and means to achieve better system performance. Subsequently, the need to 
integrate both activities of these issues has found its basis in the context of the networked and 
collaborative manufacturing environment. However, no conventional shop floor control system 
based on a centralized or hierarchical control architecture can handle the necessary adaptive and 
autonomous control of the manufacturing system. 

 

In distributed manufacturing, however, the several locations and assets have often localization 
specificities (ex: mixed local and global supply chains, different regulations, different contexts) and 
are subjected to different cybersecurity realities. The distributed manufacturing organization as a 
whole is highly based on digitalization for manufacturing and coordination. The robustness and 
resilience of the organization in face of cyberthreats is, therefore, of maximum importance.  

In this context, production scheduling needs to work in a decentralized way, with every location and 
asset/group of assets being able to negotiate production but also to be able to work independently 

                                                      

226 [1] T. Borangiu et al., “Digital transformation of manufacturing. Industry of the Future with 
Cyber-Physical Production Systems,” 2020. 
227 Kubler S., Holmstrom J., Fr ¨ Amling K., Turkama P., ¨ Technological Theory of Cloud 
Manufacturing, Service Orientation in Holonic and Multi-Agent Manufacturing, Studies in 
Computational Intelligence 640, pp. 267–276, 2016. 
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(at least temporarily) from the other parts. Decentralized scheduling also benefits global efficiency 
through load sharing and economics optimization (e.g. production costs, fluctuation in local 
conditions) and scalability228. However, the biggest advantage of decentralized production 
scheduling is the ability to support dynamic system reconfiguration in face of the internal or external 
system dynamics, allowing, for example, faster recovery from resource or equipment unavailability 
and cyberattacks, allowing the systems to negotiate, reconfigure their relations, data flows and 
production. Distributed manufacturing organizations should also be able to fully exploit the 
advantages of digitalization. Therefore, the control architecture is gradually being shifted to the 
distributed, decentralized and autonomous control (DDAC) architecture. Since DDAC shop floor 
control system may have complete local autonomy, governing the reconfigurability, scalability as 
well as fault tolerance, it is suitable for a dynamically changing environment.  

To achieve the successful information and knowledge exchange between different facilities, there 
is a need for internet and communication technology IoT (internet of things) through which it can be 
possible to link all of them. Some of the key literature reviews for planning and scheduling and their 
integration, regarding the application of artificial intelligence-based approaches, multi-agent-based 
simulation, cloud manufacturing, internet of things, big data and digitalization. 

In traditional manufacturing, the machines associated with the jobs are located and conditioned in 
a single workshop or company. However, networked manufacturing jobs and machines are 
distributed in different workshops or companies located globally at greater distances. Thus, it can 
be inferred that a networked manufacturing situation is similar to that found in a flexible 
manufacturing system, where many possible machines, operations are feasible but possibly not on 
the same shop floor. 

Current ERP-solutions lack extended enterprise support and a shared cloud-based approach. On 
the other hand, current MES solutions can operate the manufacturing process, but not for distributed 
manufacturing229. The answer lies in a cloud-based manufacturing, which can present rich 
optimization and scheduling services in a decentralized way. It can also leverage the extraction of 
value from data through new business models based on “as-a-service and data-driven paradigms 
(ex: AI-as-a-Service).  

Intelligent production is a term that encompasses industry 4.0 and smart factories, and is 
characterized by all cyber-physical systems that allow equipment, resources and people to 
communicate in an interconnected way and in real time, to exchange information and to optimize 
processes and resources throughout the manufacturing process. According to a study by 
Capgemini230, smart factories could add between 500 billion to 1.5 billion dollars to the global 
economy by 2022, allowing companies to enjoy an efficiency rate 7 times higher than the growth. 

 Furthermore, it can be said that in networked manufacturing, generating an optimal process plan 
for each job in the presence of various dynamic constraints, such as the current state of machines, 
tools and fixtures, at a given manufacturing site is posing a real challenge. 

 

                                                      

228 Hedberg, Thomas, Helu, Moneer, and Sprock, Timothy. "A Standards and Technology 
Roadmap for Scalable Distributed Manufacturing Systems." Proceedings of the ASME 2018 13th 
International Manufacturing Science and Engineering Conference. Volume 3: Manufacturing 

Equipment and Systems. College Station, Texas, USA. June 18–22, 2018. V003T02A019. ASME.  

229 Petri Helo, Mikko Suorsa, Yuqiuge Hao, Pornthep Anussornnitisarn, Toward a cloud-based 
manufacturing execution system for distributed manufacturing, Computers in Industry, Volume 65, 
Issue 4, 2014, Pages 646-656, ISSN 0166-3615. 

230  Eyob, E., & Tetteh, E. G. (2012). Customer-oriented global supply chains: Concepts for 
effective management. In Customer-Oriented Global Supply Chains: Concepts for Effective 
Management. 
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7. Conclusions  
In this document, optimization techniques aiming to improve the effectiveness, resilience and 
robustness of the FoF are presented. In doing so, the project aims to boost several capabilities of 
FoF by improving the shop-floor management (chapter III), improve efficiency, security, safety, and 
resilience of FOF through machine learning algorithms (chapter IV). Furthermore, from the 
exploitation of the different data sources in the data lake, data-driven business models are going to 
be identified and exploit (chapter IV), such models aim to continuously improve both processes and 
products. Enhance the interaction between humans and machines (chapter V) and improve the 
management of manufacturing load through a network of factories (chapter VI) 

Our first goal, the improvement of the shop-floor management is attained by exploring sensing and 
tracking technologies, which might be useful on the shop-floor. 

In an indoor tracking system, the goal is to get asset location in terms of X Y Z coordinates. We can 
use this information in different ways, such as asset visualization, georeference and trigger alerts 
when an asset gets into or out of a concrete area, etc.  

The choice for a RTLS are strongly dependent on operating environment constraints and 
requirements. In Section III, advantages and disadvantages of technologies such as BLE, UWB, 
Wi-Fi and ZigBee are discussed, with a special highlight on issues such as battery, range, tag 
collision and security. The chosen technology is UWB for an indoor system, because of its high 
accuracy (30 cm approximately) and because it operates in industrial (metal) environments. 

Furthermore, IIoT platforms are discussed in terms of their connectivity, integration, analytics, 
application and security. If all platforms offer analytic tools, not all services are at disposal in a 
single platform. Therefore, the user choice should be based on the features needed, for example, 
SAP cloud platform is a great choice regarding security but lacks on connectivity and integration 
modules. The data extracted by a RTLS is going to populate the data lake, using such a data, novel 
services and management decisions could be better performed. For example, in a robot-fleet 
scenario, a RTLS might be used to attribute a task to the robot that is closest to a good. 

In Section IV, data lake technologies are described and explored. From Big data technologies, some 
components can be reused in order to create a feasible and efficient data lake pipeline, namely 
distributed queuing, big data stream platforms, big data storage and stream SQL engines.  The 
proposed data lake architecture extends from a shop-floor network to a telecommunication network. 
The architecture is divided into three domains: a control domain, where data is going to be 
processed by ingestion systems. Operation and information domain, where data is storage on 
platforms like Hadoop, that allow machine learning algorithms to be able to train or infer class 
distributions from the data. Finally, application and business are the last domain, where several 
services are provided from data visualization to analytic reports. 

The lake is going to be populated using data from different sources: machine, processes and 
product data, control system (product real-time tracking system), environmental and contextual 
data, ERP, logs events, mouse and keyboard interaction events, IP traffic logs, temperature data, 
geolocation, electronic tomography, machine vision and audio data. The existence of a single 
repository for such large and diverse collection of data is a unique opportunity to merge and extract 
even more value from the lake. Such a value comes not only from each single data source but also 
from the result of combining different type of source data. Furthermore, from such data multi-model 
systems can be indeed created, offering a unique perspective of the complex events that happen 
on the shop-floor.    

One of the key expected results of the project is the creation of a new set of services and 
applications such as analytical services, intelligent support decision service, prediction, 
maintenance, safety and security applications.  

In chapter V the human and machine interaction is considered, namely the process of teaching a 
robot to perform simple and complex tasks by a visual human demonstration. One of such 
techniques is LbD, where a control policy needs to be learn by the robot.  Currently, there are 
several different forms of policies, and there is no dominant technique. On the other hand, an 
approach based on reinforcement learning and imitation learning has been shown effective in 
addressing the acquisition of skills. In general, a single teacher usually does teaching at each time 
and there might be conflicting demonstrations across teachers with different styles. Furthermore, 
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each experiment is independent, i.e. no previous tasks are considered in the learning process. In 
this project, prior knowledge are going to be reused in order to solve large scale complex task. In 
doing so, the robot is going to select its own features and previous acquired knowledge but at the 
same time, redundancy is going to be deleted for a more storage and processing efficiency.  

In chapter VI, distributed manufacturing schemes and strategies are discussed. The system aims 
to manage different type of distributed resources and processes, gather and report analytical 
results, and create a scalable service oriented for distributed manufacturing. Such a system, should 
be able to derive the best operational conditions, optimize resources and control, perform decisions 
on real-time or near real-time and at the same time be aware of the global manufacturing 
environment. However, a scalable distributed manufacturing system is a complex problem, since 
the search space increases exponentially with the number of inputs. If the model is too simple, it 
might be worthless for real cases, but on the other hand, if the model is too complex, it will take a 
long time to derive a solution and thus not suitable for real- time or near real-time requirements. In 
this project, an innovative architecture is going to be proposed, which is based on a distributed 
processing and collaborative intelligent agents. Such architecture is going to be build based on an 
interoperable web service that will accept several types of inputs, such as customers, orders, 
factories, transportation costs, human resources, etc. Using the inputs, an intelligent algorithm is 
going to distribute the workload across different factories and within each factory the operation 
sequence and assignments, in such way that minimizes or maximizes a customized cost or profit 
function of the entire global manufacturing process respectively. 


