Join us for our next webinar!

 

Resilience Capabilities for the Factory of the Future

The webinar will provide insights to one of the key capabilities of CyberFactory#1: Resilience. The keynote speech is given by Sauli Eloranta, Professor of Practice at VTT, on “Industry challenge to resilience in the factory of the future”. Afterwards, experts from a number of project partners will discuss the different aspects that need to be considered for a resilient Factory of the Future. The first half focuses on access management approaches and protection of AIs. After a short Q&A, presentations are given on monitoring of the FoF and dealing with cyberattacks, followed by another Q&A.

 


Date: 28.04.2021

Time: 14.00 – 16.10 CEST

Registration: Click here.

 

14.00:             Welcome

Jarno Salonen, VTT

Keynote: Industry challenge to resilience in the factory of the future

Sauli Eloranta, VTT


14.20:             How to create trust with comprehensive identity and access management

Markku Korkiakoski, Netox

Don’t make me think: an intuitive access management approach

Diogo Santos, Sistrade


14.40:             How to protect AI from manipulation attempts

Ching-Yu Kao, Fraunhofer AISEC

Aspects of preventing AI manipulation

Seppo Heikura, Houston Analytics


15.00:              Q&A


15.10:             How to enhance resilience by monitoring the FoF

Mario Brauer, Airbus CyberSecurity Germany

Monitoring different aspects of human behaviour on the shop-floor

Jorge Oliveira, ISEP


15.30:             Architectural approach to effectively detect cyberattacks

Murat Lostar, Lostar

How to remediate and recover from a cyberattack

Jari Partanen, Bittium


15.50:              Q&A


16.00              Wrap Up

Jarno Salonen, VTT

 

Keynote Speaker:

Sauli Eloranta (Professor of Practice at VTT Technical Research Centre of Finland)

Sauli Eloranta, M. Sc. (Tech.), began working as Professor of Practice at VTT on 1 January 2020. Eloranta, elected the CTO of the Year in Finland in 2019, came to VTT with a long experience of promoting technology and digitisation in industry and maritime transport.

Before VTT, Eloranta acted as Head of Innovation and Technology at Rolls-Royce Marine, later Kongsberg Maritime. Eloranta earned the CTO of the Year title granted by the Federation of Finnish Technology Industries for his merits as an active influencer in the Finnish innovation scene and promotor of autonomous marine traffic. He chaired the One Sea Autonomous Maritime Ecosystem in 2016-2019. Sauli has chaired the Business Finland digital advisory board and is a member of the transport sector growth programme. In addition, he has been involved in supporting the collaboration of the private sector and societal actors.

In his role as Professor of Practice, Eloranta focuses on the overall resilience of the Finnish society. His area also covers cyber security, autonomous systems and smart transport & mobility. Recently, Sauli has given program management support to Finland´s Ministry of Economics & Employment (TEM) in establishing domestic production of face masks for public health care.

CyberFactory#1 Welcomes LISA to the Team

 

We are proud to announce that the CyberFactory#1 Consortium was joined by LISA Deutschland GmbH in February 2021. LISA Group is an internationally known company for Intelligent Systems and learning algorithms, and has extensive experinece in developing Systems for Aircraft and Space Operations.

Within the project LISA will provide an autonomous anomaly bot aimed at detecting cybersecurity anomalies to enhance production and manufacturing in the factory of the future. The bot will be used within the use cases of Airbus Defense and Space (Spain) but it can be applied to detect cybersecurity anomalies in any environment. You can read more about their addition to the project here.

 

 

Poster Presentation at Machine Learning in Certified Systems Workshop

Members of the CyberFactory#1 project consortium participated in the Machine Learning in Certified Systems Workshop organised by the DEEL project. Ana Pereira from the University of Applied Sciences Berlin (HTW) presented a poster on “Safety Hazards Analysis and Mitigation Strategies for Machine Learning-Based Safety-Critical Systems”.

Abstract:

Machine Learning (ML) is increasingly applied for the control of safety-critical Cyber-Physical Systems (CPS). As a consequence, the safety of machine learning became a focus area for research in recent years. Applying a classic technique of safety engineering, our work provides a methodological analysis of the safety hazards that could be introduced along the ML lifecycle, and that could compromise the safe operation of ML-based CPS. The comprehensive analysis presented here intends to be used as a basis for holistic approaches for safety engineering of ML-based CPS in safety-critical applications, and aims to support the use of ML-based control systems in highly safety-critical applications and their certification.

The poster was created by Ana Pereira and Carsten Thomas from the University of Applied Sciences Berlin (HTW).

You can download the poster here.

Paper presentations at four conferences

We congratulate our colleagues from Fraunhofer AISEC for four paper presentations at academic conferences within the past months! Click on the titles below for more information on each paper.

This paper was presented at the DYNAMICS workshop on the 7th of December 2020 at the Annual Computer Security Applications Conference (ACSAC). The paper proposes a novel method to make deep learning models robust, which can be applied on different data sets, such as images, audios, languages. The results show this method is comparable to adversarial training method.

The paper is available to download here.

Authors: Philip Sperl and Konstantin Böttinger

Abstract: Neural Networks (NNs) are vulnerable to adversarial examples. Such inputs differ only slightly from their benign counterparts yet provoke misclassifications of the attacked NNs. The required perturbations to craft the examples are often negligible and even human imperceptible. To protect deep learning-based systems from such attacks, several countermeasures have been proposed with adversarial training still being considered the most effective. Here, NNs are iteratively retrained using adversarial examples forming a computational expensive and time consuming process often leading to a performance decrease. To overcome the downsides of adversarial training while still providing a high level of security, we present a new training approach we call \textit{entropic retraining}. Based on an information-theoretic-inspired analysis, entropic retraining mimics the effects of adversarial training without the need of the laborious generation of adversarial examples. We empirically show that entropic retraining leads to a significant increase in NNs’ security and robustness while only relying on the given original data. With our prototype implementation we validate and show the effectiveness of our approach for various NN architectures and data sets.

The second paper was also presented at the Annual Computer Security Applications Conference (ACSAC) 2020. The authors apply two visualization techniques to the ASR system Deepspeech and show significant visual differences between benign data and adversarial examples.

Authors: Karla Markert, Romain Parracone, Philip Sperl and Konstantin Böttinger.

Abstract: Security of automatic speech recognition (ASR) is becoming ever more important as such systems increasingly influence our daily life, notably through virtual assistants. Most of today’s ASR systems are based on neural networks and their vulnerability to adversarial examples has become a great matter of research interest. In parallel, the research for neural networks in the image domain has progressed, including methods for explaining their predictions. New concepts, referred to as attribution methods, have been developed to visualize regions in the input domain that strongly influence the image’s classification.  In this paper, we apply two visualization techniques to the ASR system Deepspeech and show significant visual differences between benign data and adversarial examples. With our approach we make first steps towards explaining ASR systems, enabling the understanding of their decision process.

The third paper was presented at the 4th ACM Computer Science in Cars Symposium (ACM CSCS 2020). This paper provides a short overview on recent literature to discuss the language bias towards English in current research. The preliminary findings underline that there are differences in the vulnerability of a German and an English ASR system.

Authors: Karla Markert, Donika Mirdita and Konstantin Böttinger

Abstract: Voice control systems in vehicles offer great advantages for drivers, in particular more comfort and increased safety while driving.  Being continuously enhanced, they are planned to comfortably allow access to the networked home via external interfaces. At the same time, this far-reaching control enables new attack vectors and opens doors for cyber criminals. Any attacks on the voice control systems concern the safety of the car as well as the confidentiality and integrity of the user’s private data. For this reason, the analysis of targeted attacks on automatic speech recognition (ASR) systems, which extract the information necessary for voice control systems, is of great interest. The literature so far has only dealt with attacks on English ASR systems. Since most drivers interact with the voice control system in their mother tongue, it is important to study language-specific characteristics in the generation of so-called adversarial examples: manipulated audio data that trick ASR systems. In this paper, we provide a short overview on recent literature to discuss the language bias towards English in current research. Our preliminary findings underline that there are differences in the vulnerability of a German and an English ASR system.

This paper was already presented at the IEEE European Symposium on Security and Privacy 2020 in September. It proposes an adversarial example detector by analysing dense layer activations of deep learning models.

The paper is available to download here.

Authors: Philip Sperl, Ching-Yu Kao, Peng Chen, Xiao Lei, and Konstantin Boettinger

Abstract: In this paper, we present a novel end-to-end framework to detect such attacks during classification without influencing the target model’s performance. Inspired by recent research in neuron-coverage guided testing we show that dense layers of DNNs carry security-sensitive information. With a secondary DNN we analyze the activation patterns of the dense layers during classification runtime, which enables effective and real-time detection of adversarial examples. This approach has the advantage of leaving the already trained target model and its classification accuracy unchanged. Protecting vulnerable DNNs with such detection capabilities significantly improves robustness against state-of-the-art attacks.Our prototype implementation successfully detects adversarial examples in image, natural language, and audio processing. Thereby, we cover a variety of target DNNs, including Long Short Term Memory (LSTM) architectures. In addition to effectively defend against state-of-the-art attacks, our approach generalizes between different sets of adversarial examples. Thus, our method most likely enables us to detect even future, yet unknown attacks.

Virtual Panel – CyberFactory: How to make the Factory of the Future efficient and secure?

On the 9th of December we held our virtual panel on “CyberFactory#1: How to make the factory of the future efficient and secure”. Our speakers, Adrien Bécue, İrem Hilavin and Jari Partanen, presented the project, the use-case of Vestel and aspects of FoF resilience before answering questions such as on human-machine relations or what the benefits of this project might be for companies that are not directly involved. Below you can find the presentation slides. We look forward to many more events in the new year!

 

 

Abstract:

As factories digitalise and adopt automation technologies, they unlock new business models, manufacturing processes and logistics methods – as well as alternative roles for the people and machines that work in the factory. At the same time, these processes result in more complex IT and OT systems, presenting novel cyber security challenges and potentially leading to dangerous new interdependencies.

Based on early results from the European research project CyberFactory#1, our panel discussed both the opportunities and challenges represented by the digitalisation and automation of factories, including what the transition towards a new factory system of systems may look like – but also the new threats that organisations may face if security and resilience are not prioritised early in the process.

 

Speakers:

Adrien Bécue, Project Leader CyberFactory#1, Head of Innovation, Airbus CyberSecurity, France

Jari Partanen, Task Leader CyberResilience, Head of Quality, Environment and Technology Management, Bittium, Finland

İrem Hilavin, Work Package Leader Integration & Validation, SW Design Architect, Vestel, Turkey

 

 

Paper Presentation at ISAmI 2020

Prof. Dr. Isabel Praça of the School of Engineering (ISEP) / Polytechnic Institute of Porto (IPP) will present a paper titled: “FullExpression – Using transfer learning in the classification of human emotions” at ISAmI 2020 – the International Symposium on Ambient Intelligence – later in October this year.

The paper addresses the topic of how emotions can be detected to pave the way for mental states like fatigue, lack of attention, or similar symptoms detection. This is ISEP background research with the intention to apply it to the capabilities of Human Machine optimization and safety capabilities of CyberFactory.

CF#1 is now part of EFFRA portal

CyberFactory#1 is now listed as a project on the European Factories of the Future Research Association (EFFRA) innovation portal. It is for now the only ITEA project that is part of the portal.

You can find more information here: https://portal.effra.eu/projects.

We are delighted to be in the company among these others ambitious and innovative projects!

Call for Papers: Workshop on Cyber-Physical System Modeling

Workshop on Cyber-Physical System Modeling: Applications for Industry 4.0 Optimization and Resilience – Call for Papers

In conjunction with ESM 2020, October 21 – October 23, 2020, Toulouse, France

This workshop focuses on the development and application of methods for modeling and simulation of CPS for the factory of the future (FoF).

With the advent of Smart Factory, digitalization and automation processes have moved into the focus of industry. The primary goal is not the optimization of a single production plant, but of the factory as a whole by augmenting physical assets with advanced digital technologies, such as the internet of things (IoT), artificial intelligence (AI) and robots. From a modeling perspective, the individual components of the factory thus become cyber-physical systems (CPS) that communicate, analyze, and act upon information, enabling more flexible and responsive production.

The organizers invite contributions with a focus towards CPS in the FoF that describe problem statements, trends, and emerging ideas in the engineering and application of CPS in industrial production.

Topics include, but are not limited to:

  • Requirements on CPS modeling for optimization and resilience of the FoF
  • Architectures for the FoF
  • Application of existing CPS models to manufacturing: benefits and gaps
  • Usage of digital twins for optimization and resilience in the FoF
  • Data lake exploitation for the FoF
  • Models & Simulations for the identification of threats on safety and security in the FoF
  • Tool support for modeling and simulation of the FoF
  • Uncertainties and predictions in the FoF models
  • Modeling of human-machine-interaction in the FoF
  • Distributed manufacturing
  • Cyber resilience modeling for the FoF

Paper format:

Participants may submit a 5-8 page full paper (single spaced, double column) in PDF format. Paper formatting guidelines can be found at https://www.eurosis.org/conf/esm/2020/submissions.html. All accepted papers will be published in the ESM’2020 Conference Proceedings.

Workshop format:

The workshop will be held as part of the European Simulation and Modelling Conference (ESM) 2020 to take place in Toulouse, France on October 20-23, 2020. It will feature peer-reviewed paper presentations organized according to the topics defined above. Papers not exceeding 8 pages must be submitted electronically via email (see: https://www.eurosis.org/conf/esm/2020/email-reply.html) in PDF format and must be conform to the submission guidelines (see: https://www.eurosis.org/conf/esm/2020/submissions.html).

The IEEE transaction templates can be used to get a suitable layout (see: https://journals.ieeeauthorcenter.ieee.org/create-your-ieee-journal-article/authoring-tools-and-templates/ieee-article-templates/templates-for-transactions/).

Each submission will be reviewed by at least three members of the Program Committee and will be evaluated on the basis of originality, importance of contribution, soundness, evaluation, quality of presentation and appropriate comparison to related work. The program committee as a whole will make final decisions about which submissions to accept for presentation at the conference.

Important Dates:

Paper Submission deadline: Jun 25th, 2020

Notification of acceptance/rejection: Aug 25th, 2020

Camera ready paper: Sep 30th, 2020

Workshop: Oct 21th-23th, 2020*

Organizers:

Linda Feeken (OFFIS e.V.), Eva Catarina Gomes Maia (Instituto Superior de Engenharia do Porto),  Frank Oppenheimer (OFFIS e.V.), Isabel Praça (Instituto Superior de Engenharia do Porto), Ingo Stierand (OFFIS e.V.)

Contact:

Linda Feeken, linda.feeken@offis.de

Conference website: https://www.eurosis.org/conf/esm/2020

 

*programme of the ESM is not yet fixed, workshop will be on one of the three conference days

 

Finnish Consortium with First Steps towards Improved FoF Security

When developing Factories of the Future, security is also an important aspect. CyberFactory#1 will respond to this challenge by developing a set of safety and security capabilities. One of these capabilities is cyber resilience. Although the development work has not yet started, CyberFactory#1’s Finnish partners prepared and presented a Cyber Resilience Starting Point Demo in the project review at Oulu in January.

Figure 1 A part o fthe demo set-up

Resilient communications

A key resilience function in FoF systems, including IIoT, is the ability to maintain constant connectivity to industrial control systems and other systems on a continuous basis. A single network may not provide sufficient reliability in critical manufacturin  g systems. Therefore, in order to build resilient manufacturing systems, a seamless network failover is relevant. The scenario in Figure 2 demonstrates IIoT device network switching for resilient communications.

Figure 2 Demo scenario 

Continuously up-to-date IIoT devices

A common flaw in IIoT systems is the cumbersome or non-existent update management system. Administrator needs to be provided with insight on the current rate of deployment of up-to-date and outdated devices, and with capability to monitor the update progress in real-time, using the device management console dashboards. The scenario in Figure 3 demonstrates the use of standards based device management (LWM2M) and the standard mechanism for updating IIoT gateway remotely.

Figure 3 Demo scenario for standards based device management and remote updates

Dynamic reconfiguration of IIoT devices

Dynamic security policies in IIoT devices are an important enabler for resilience of IIoT systems. Based on IIoT device produced data (and changes in certain data points) the security policy of the IIoT device gets updated from the device management server. This scenario demonstrated how dynamic reconfiguration enables the recovery from incidents and disaster situations.

The demo was created in collaboration with Bittium, Netox, VTT and Rugged Tooling, using the knowledge of each partner to create a realistic environment. “It was great to able to contribute to creating the traffic needed, and test our sensor in the mutually created environment”, says Esa from Rugged Tooling. “Bittium SafeMove® Analytics was adapted to the demo in order to demonstrate the fleet of the IIoT devices, in order to detect the devices and required updates for cyber resilient operations. We were also able to connect the system seamlessly and wirelessly with the cloud connectivity provided by Netox”” clarified Björn from Bittium.

This Starting Point Demo was a great collaboration effort and a remarkable first step towards the Kick-off of Work Package 5: FoF dynamic risk management and resilience in April 2020.

Involved Partners: Bittium, Netox, Rugged Tooling, VTT Technical Research Centre of Finland

Attendance of CyberFactory#1 Members at two EFFRA events in March

Project lead Adrien Bécue from Airbus CyberSecurity France and technical coordinator Prof. Dr. Isabel Praça from ISEP will attend two European Factories of the Future Research Association events on March 11th (online) and 12th (Brussels). More information below:

11 March: Digitalisation and digital platforms for manufacturing

With respect to content and scope, this event/workshop will focus on the projects associated to the call topic DT-ICT-07-2018-2019 (Digital Manufacturing Platforms for Connected Smart Factories), complemented by other key projects in this area. The main outcome and objectives of the projects will be presented, while break-out sessions will address domains such as interoperability, cybersecurity, AI, Human aspects, etc.. The set-up of the break-out sessions will be discussed with representatives of key projects prior to the workshop.
Registration -> This event will be hold remotely.

12 March: ConnectedFactories projects’ meeting

Participation at this meeting will be limited to representatives of the projects from the call topic DT-ICT-07-2018-2019 (Digital Manufacturing Platforms for Connected Smart Factories), complemented by some experts associated to key initiatives. The meeting will focus on the cooperation among projects. The meeting will be held in plenary and the agenda will be detailed in cooperation with the project key representatives.
Registration