
DLA: Dense-Layer-Analysis for Adversarial Example Detection

Philip Sperl, Ching-Yu Kao, Peng Chen, Xiao Lei, Konstantin Böttinger
Fraunhofer AISEC, Germany

{philip.sperl, ching-yu.kao, peng.chen, xiao.lei, konstantin.boettinger}@aisec.fraunhofer.de

Abstract—In recent years Deep Neural Networks (DNNs)
have achieved remarkable results and even showed super-
human capabilities in a broad range of domains. This led
people to trust in DNN classifications even in security-
sensitive environments like autonomous driving. Despite
their impressive achievements, DNNs are known to be vulner-
able to adversarial examples. Such inputs contain small per-
turbations to intentionally fool the attacked model. In this pa-
per, we present a novel end-to-end framework to detect such
attacks without influencing the target model’s performance.
Inspired by research in neuron-coverage guided testing we
show that dense layers of DNNs carry security-sensitive in-
formation. With a secondary DNN we analyze the activation
patterns of the dense layers during classification run-time,
which enables effective and real-time detection of adversarial
examples. Our prototype implementation successfully detects
adversarial examples in image, natural language, and audio
processing. Thereby, we cover a variety of target DNN archi-
tectures. In addition to effectively defending against state-of-
the-art attacks, our approach generalizes between different
sets of adversarial examples. Our experiments indicate that
we are able to detect future, yet unknown, attacks. Finally,
during white-box adaptive attacks, we show our method
cannot be easily bypassed.

Index Terms—Deep Learning, Adversarial Machine Learn-
ing, Neural Network Security

1. Introduction

Machine learning (ML) and especially deep learning
(DL) applications transform modern technologies at an
impressive pace. Research progress and the availability of
high performance hardware enable the training of increas-
ingly complex models. Such DL models have achieved
even super-human results in a broad range of domains.
From classical image classification tasks [1], to outplaying
humans in Go [2], or even autonomously driving cars [3].

In numerous scenarios the security and safety are of
crucial importance. Errors in the ML processing pipeline
can affect our daily routine, lead to severe incidents in
the users’ health, or threaten future critical infrastructures.
Such errors not only stem from inaccuracies in the train-
ing phase, but also from intentionally performed attacks.
Hence, the security of systems incorporating DL concepts
is a major task for engineers, data scientists, and the
research community.

Malicious actions aiming at DL models come in two
flavors according to their attack timing. Poisoning attacks

A preprint of this paper has been deposited on ArXiv.

target the training phase, while evasion attacks are per-
formed in the test phase. For poisoning attacks the attacker
induces changes to the training dataset and especially to
the labels to provoke misclassifications [4], [5]. As the
training dataset is typically not available to attackers, the
majority of recent work focuses on evasion attacks. Here
the attacker manipulates the behavior of the DL model
itself such that intended misclassifications occur. In 2014,
Szegedy et al. [6] first demonstrated that small pertur-
bations on images fed to a deep neural network (DNN)
can provoke such misclassifications. Since then, new at-
tacks and countermeasures against so-called adversarial
examples have been introduced at a fast pace without the
discovery of a fundamental and general defense strategy,
yet. In this paper, we propose an effective defense mech-
anism that detects such adversarial example attacks with
high accuracy. Our approach generalizes between a broad
range of state-of-the-art attacks and therefore does not
only cover contemporary attacks, but will, based on our
experiments, also defend against future attacks. Further,
our method defends against attacks in image classification,
natural language, and audio processing scenarios.

Currently, adversarial attacks seem to subdue corre-
sponding defense methods. Research in this field is yet to
provide a generally applicable solution to this problem,
which motivates the work in this paper. Our main idea is
based on observing neural activity during classification
run-time. We were inspired by recent findings in the
field of neural network (NN) testing and its interesting
prospects. Pei et al. [7] introduced the idea of neuron
coverage, which serves as a metric to guide testing of
NNs. Since then, further coverage metrics have been
proposed and various testing techniques have made use
of them [8], [9]. Odena and Goodfellow [10] reported
promising results when applying concepts of coverage-
guided fuzzing to NN testing using neuron coverage.

These recent findings indicate that the neuron coverage
of DL models carry security-sensitive information. This
hypothesis at hand led us to the main insight of this paper:
We show that neuron coverage exhibits a characteristic
behavior when processing adversarial examples. In partic-
ular, adversarial examples provoke a unique pattern in the
coverage such that respective inputs become detectable.
Interestingly, this characteristic is independent of the at-
tack method, as our results strongly indicate. With this
observation we optimistically assume that our approach
will also defend against yet unknown attacks. For future
work on this topic, we plan to publish our code, models,
and used datasets.

In summary we make the following contributions:

• We propose a general end-to-end method to de-

tect adversarial examples generated using different
state-of-the-art methods.

• We successfully detect adversarial examples in
image classification, natural language processing
(NLP), and DL-based audio processing.

• We implement and evaluate our approach to suc-
cessfully detect prior unseen adversarial examples
of various attack methods.

• We evaluate our method during adaptive attacks.

The rest of this paper is structured as follows. In
Section 2, we review related work and summarize the
latest findings on defense strategies against adversarial
attacks. In order to fully describe the environment in
which we can successfully detect adversarial examples
we introduce the threat models we consider throughout
this paper in Section 3. We present our main contribution,
a novel concept of detecting evasion attacks on NNs, in
Section 4. Sections 5 and 6 present a thorough proof-
of-concept including experiments and evaluation of the
results. To further gain trust in our concept, we perform
and evaluate adaptive white-box attacks in Section 7. In
Section 8, we discuss the restrictions of our method as
well as the real-world applicability, transferability, and
generalization to future attacks. Finally, we conclude the
paper with Section 9.

2. Related Work and Background

2.1. Adversarial Attack Methods

In this paper, we introduce a framework to detect test-
time evasion attacks. The aim of an evasion attack is to
generate an adversarial example that is misclassified by
the targeted DL model. More formally:

Definition: Adversarial Examples. Let f(·) be a trained
neural network used for classification tasks. Let H(·) be
a human oracle with the same classification capabilities.
Assume that for a given legitimate input x the following
equation holds:

f(x) = H(x)

Let x′ be a mutated version of x that is close to x, i.e.,
‖x′ − x‖ 6 ε for some small ε ∈ R+. Then x′ is an
adversarial example, if the following holds:

H(x) = H(x′) ∧ f(x′) 6= H(x′).

Informally, adversarial examples are slightly mutated
versions of their original counterparts that lead the tar-
geted network to misclassification. We categorize test-
time evasion attacks as introduced in [11]. The different
attack types differ in the amount and nature of informa-
tion available to the attacker. In white-box attacks the
attacker has full control over the target which includes
knowledge about the architecture and parameters of the
trained model. Hence, the adversary is able to deliberately
craft adversarial examples exploiting the knowledge of the
model. Contrary to that, in black-box attacks, the attacker
neither has knowledge of the target model architecture nor
access to the parameters after training. In the following,
we introduce state-of-the-art white-box attack methods.
Throughout our experiments in Section 5 we will revisit

the here introduced attack methods and motivate our
choice of considered attacks in Section 5.3.

Szegedy et al. [6] first demonstrated the vulnerability
of NNs to slightly mutated inputs. The authors formulated
the problem of finding such mutations with a minimization
problem. To solve this problem the authors used a box-
constrained L-BFGS [12].

In 2014, Goodfellow et al. [13] refined the previous
findings and proposed their resulting “Fast Gradient Sign
Method” (FGSM).

Kurakin et al. [14] proposed the “Basic Iterative
Method” (BIM). In this attack, the inputs are mutated
based on single steps which aim to increase the loss
function. After each step the direction is adjusted.

Madry et al. [15] further refined the approach. The
authors showed the BIM attack being equivalent to “Pro-
jected Gradient Descent” (PGD). By making use of the
l∞ version of this standard convex optimization method
the authors further improved the previously shown BIM.

Moosavi-Dezfooli et al. [16] proposed DeepFool,
which generates adversarial perturbations by iteratively
pushing the inputs towards the decision boundary of the
attacked network. In order to model the decision boundary
in a simplified manner, it is linearized and represented by
a polyhydron.

The majority of current attacks are restricted by the
l∞ or l2 norm between benign and adversarial examples.
In contrast to that, Papernot et al. [17] proposed in their
“Jacobian-based Saliency Map Attack” (JSMA) to restrict
the perturbations with respect to the l0 norm. Hence, the
attack tries to minimize the amount of input points being
changed rather than restricting the global change to the
input.

This idea was refined by Su et al. [18]. In this pub-
lication the authors successfully fooled DNNs using their
One Pixel Attack.

Currently the most powerful white-box attack was
proposed by Carlini and Wagner (C&W) in [19]. This
method is capable of crafting adversarial examples even
for targets protected by state-of-the-art defense methods.
The basic idea of the attack is instead of optimizing the
loss function directly to rather introduce a cost function
fy as substitute.

Moosavi-Dezfooli et al. [20] presented Universal Ad-
versarial Perturbations. Rather than calculating individual
adversarial examples, the authors calculated a universal
perturbation such that when added to an arbitrary input,
the target network is fooled.

If the attacker does not have access to the target
model and its parameters, black-box attacks still pose
an alternative to manipulate the classifications. In this
paper, we focus on Transfer Attacks exclusively, when
confronted with a black-box situation. Here, the attacker
uses a NN over which she has full control and creates
adversarial examples for it. The attacker then transfers
the resulting examples to the actual target to provoke a
misclassification. This property of adversarial examples
has been shown and analyzed by numerous publications,
e.g., [6], [13], [21].

2.2. Defenses against Adversarial Examples

Akhtar and Mian [22] categorize adversarial defenses
using three classes. The first class introduces a modified
training procedure or various prepossessing methods to
the input data. In the second, modifications to the targeted
model itself are summarized, while the third class contains
concepts using an additional model to increase overall
robustness. For the latter two classes, some techniques
aim to increase the robustness by detecting adversarial
examples. As we propose a new technique to achieve
the same goal, we sum up related methods into a fourth
class. In the following we make use of this categorization
and present previous findings for each class and explain
them briefly. We pay special attention to state-of-the-art
detection methods and refer to the survey by Carlini and
Wagner [23] for further information.

2.2.1. Changes to the Training Process or Input Data.
Adversarial Training: The most intuitive and widely
performed defense technique is to include adversarial
examples in the training phase of the model to protect.
This is achieved by simply extending the training set with
adversarial examples [24]. Adversarial training is often
introduced by authors of attacks as the first strategy to
prevent a successful attack [6], [13], [16].

The authors of [13] proposed training based on a
modified objective function. The idea is to force the
prediction of adversarial and benign images of one class
to the same direction. Additional regularization avoids
over-fitting, which again increases the robustness of the
network against unseen adversarial examples [13], [25].

In 2017 Madry et al. [15] interpreted adversarial train-
ing as a robust optimization problem. The authors claimed
the PGD attack method to be a universal attack as it
supposedly makes use of the local first order information
about the target network in a superior way compared to
other attack techniques. Hence, the authors used examples
created with PGD during the adversarial training. The
authors then show the resulting networks to be robust
against a wide range of adversaries.

As adversarial training is easy to implement it may
act as a first line of defense against known attacks. Nev-
ertheless, it should not be used as the single approach
to protect against adversaries. Moosavi-Dezfooli et al.
[20] showed that adversarially trained models are still
vulnerable using other known attack methods. Moreover,
Tramèr et al. [26] presented a two-step attack method
which also circumvents security provided by adversarial
training. The final drawback of adversarial training is the
fact, that it is prone to black-box attacks [27], [28].

Data Compression and Feature Squeezing: Dziu-
gaite et al. [29] first showed that adversarial images cre-
ated with the FGSM method can be classified correctly if
JPG compression is applied. Based on this finding, further
experiments using JPG compression resulted in successful
defense methods [30], [31]. However, Shin and Sing [32]
showed that a considerable amount of adversarial images
are not affected by to a JPG compression, especially when
crafted with the C&W method.

Similar strategies have been proposed in [33] and
[34]. Here “Feature Squeezing” is used to reduce the

complexity of the inputs, by reducing the color depth or
applying smoothing filters.

The disadvantage of the above mentioned techniques
is a decreasing classification accuracy. Since no prior
knowledge about the images is given, each one has to
be compressed before being classified, resulting in a in-
formation loss.

Data Randomization Preprocessing: Luo et al. [35]
proposed to apply the targeted neural network only to a
certain regions of the classified images. This technique is
shown to be a valuable countermeasure against adversarial
images created by L-BFGS and FGSM. Xie et al. [36]
analyzed the effects of random resizing and padding.
Similarly, Wang et al. [37] made use of a separately
executed data-transformation module, which partially re-
moves adversarial perturbations.

2.2.2. Modifying the Network. Gradient Hiding limits
the accessibility of the gradients and successfully circum-
vents associated attacks. Nonetheless, this technique does
not provide protection against black-box attacks, as shown
in [28].

Related to Gradient Hiding, Ross and Doshi-Velez
[38] introduced Gradient Regularization. The authors pro-
posed to penalize the degree of variation of the output,
based on changes in the input. This concept led to further
techniques like [39] and [40].

In 2015, Papernot et al. [41] presented Defensive Dis-
tillation. The originally introduced distillation technique
shown by Hinton et al. [42] aims to simulate a neural
network using a smaller one. In contrast to that, the
authors try to generate a smoother, less sensitive version
of the original model. This is achieved by reusing the
probability vectors of the training data during the training
of the model. In 2017, Papernot and McDaniel further
improved the concepts conveyed in the initial publication.
Nonetheless, Carlini and Wagner [19] claim their C&W
attack to be successful against Defensive Distillation.

2.2.3. External Network Add-Ons. Akhtar et al. [43]
proposed the idea of Perturbation Rectifying Networks
(PRN). These sub-networks are added in front of the
original network and are trained separately after the actual
training phase. The PRN rectifies the perturbations on the
adversarial images, which are subsequently identified by
an additional detector.

Since the 2014 released paper by Goodfellow et al.
[44], Generative Adversarial Networks (GANs) are widely
used and referred to in numerous publications. Some
promising publications using GANs to protect DNNs
against attacks are [45]–[47].

2.2.4. Detecting Adversarial Examples. Our concept
can be added to this class of defense strategies, hence,
we provide a detailed overview of the latest related find-
ings. As mentioned before, detection techniques can be
based on both, changes to the input data or to the model
itself. Additionally, observations of the model behavior or
the model’s input provide insights on whether processed
inputs are of adversarial nature or not.

In Section 2.2.1 we showed various preprocessing
and compression methods which can be applied in order
to reduce the effects of adversarial perturbations. These

methods can additionally be used to detect attacks. Baluja
and Fischer [48] showed this by using the so-called feature
squeezing technique: The authors created different ver-
sions of the input, based on different squeezing methods
and let the target network classify them. If the returned
labels differ, the authors assume this input to be adversar-
ial. In a follow-up work, Xu et al. [33] used this technique
to protect networks against the C&W attack.

Similarly, Hendrycks and Gimpel [49] performed a
principal component analysis (PCA) on the inputs of
neural networks. The authors found that for adversarial
examples, a higher weight is placed on larger principal
components in comparison to benign examples. With this
knowledge, a binary classifier can detect attacks.

Liang et al. [34] interpreted adversarial perturbations
as noise and detected them by using scalar quantization
and smoothing filters.

A more straightforward approach was evaluated by
Gong et al. [50]. By applying a binary classifier on the
input examples directly, the authors were able to detect
adversarial input among benign examples. Positive results
were achieved using the MNIST dataset exclusively, dur-
ing a later analysis in [23] the approach failed to reach
similar detection rates for different datasets.

Meng et al. [51] proposed their framework MagNet,
which evaluates the original dataset and analyzes the man-
ifold of the benign examples. If a new example is passed to
the network to be classified, it is compared to the findings
about the manifold. This method is shown to be vulnerable
against attacks incorporating larger perturbations [52].

A comparable pre-classification was introduced by
Grosse et al. [53]. The authors used the maximum mean
discrepancy test, based on sets of benign and adversarial
examples. This test provides evidence on whether the two
sub-datasets are drawn from the same distribution or not.

Hosseini et al. [54] added a new class to the used
dataset and try to unify adversarial examples in it. During
training, the network is set to assign adversarial images
to this so-called NULL class.

Metzen et al. [55] added a sub-network to the original
neural network. This sub-network is adversarially trained
and acts as a binary classifier during the classification of
the inputs. In [56], the authors showed that this method
can again be bypassed by an attack.

Lu et al. [56] hypothesized that adversarial examples
produce a pattern of Relu activation values in the late
stages of a target network which differ from those based
on benign examples. In their framework called SafetyNet,
the authors used a radial basis function support vector
machine (SVM) to distinguish between original and per-
turbed examples.

Trying to increase the security of convolutional neural
networks (CNNs), Li et al. [57] extracted the intermediate
values after convolutional layers. The authors performed
a PCA of the extracted features and a cascaded classifier
to detect attacks.

In 2017, Feinman et al. [58] tried to detect adversarial
examples using two features which they extracted from
dropout neural networks. With these features a simple
logistic regression is performed as the basis for a binary
classifier. The first feature the authors introduced is the
density estimate, based on which the distance between a
given example and the sub-manifold of a class is quanti-

fied. For this purpose the authors used the feature space
of the last hidden layer of the target network. With their
second feature, the Bayesian uncertainty estimate, the au-
thors introduced an alternative feature to detect adversarial
examples missed by the first feature. Here, points shall
be detected which lie in low-confidence regions of the
original input space, indicating an attack.

Similar to our method Ma et al. [59] detect attacks
by observing the NN’s hidden activations. The authors
identify two exploitation channels which form the basis
of their detection approach. By extracting provenance and
value invariants, attacks are detected using a one-class
SVM.

As our concept is closely related to [58] and [59] we
briefly stress the main differences and potential advantages
provided by our approach. Both stated frameworks detect
adversarial examples by examining the inner processing of
the protected NN. In contrast to our approach, the authors
further process the extracted information to craft features
enabling a detection. Instead, we propose a method which
directly works on the hidden activation values of the dense
layers. Opposed to [58] and [59], we use a secondary NN
for the final detection. This poses a more intuitive and easy
to implement solution. Our detection scheme works out-
of-the-box without additional preprocessing or optimiza-
tion steps. Furthermore, as our system solely comprises
NNs, the detection scheme can be easily integrated in
existing DL pipelines. An advantage of the concept by Ma
et al. [59] is that it does not require adversarial examples
during training.

3. Considered Threat Models

When presenting a new defense method the definition
of the considered threat model builds an essential but often
neglected part. The threat model describes the conditions
under which the defense method is designed and tested.
Hence, by defining the threat model, we convey our
assumptions under which our method is capable of guar-
anteeing a certain level of security. In the following we
present the two threat models we considered throughout
this paper. For this purpose we followed the guideline on
the evaluation of adversarial defense methods by Carlini
et al. [60].

A threat describes the following three attacker charac-
teristics:

• Goals of the adversary
• Capabilities of the adversary
• Knowledge of the adversary

The goals of the adversary describe whether an attacker
performs nontargeted or targeted attacks. In nontargeted
attacks the adversary simply tries to alter the classification
output to any class except the true class. Contrary, during
targeted attacks the goal is to alter the classification output
of the attacked NN to a specifically chosen class.

The capabilities of an adversary can range from mak-
ing changes to the input to altering the trained network. In
evasion attacks, solely changes to the input are assumed.
Such changes are typically constrained by an lp-norm
describing the distance between the original inputs and
the corresponding adversarial examples. The norm can be
chosen fitting to the environment in which the attacked

network is being used. In image classification tasks the
l0, l2, or l∞ distance are usually considered

For the evaluation of new defense methods it is crucial
to specifically define the adversary’s knowledge. This
knowledge ranges from a black-box setting in which the
attacker only sees the output of the NN, to a white-box
setting. For white-box settings, two distinct scenarios are
possible. In the first scenario, the attacker is not aware
of the applied defense method. On the other hand, in
the second white-box scenario, the attacker knows the
applied defense method. Hence, the attacker is capable
of directly attacking the combined system consisting of
defense measure and NN in an adaptive manner. This
scenario allows an evaluation of the resulting security level
of the protected network without relying upon the defense
method being secret.

Main Threat Model. In our main proof-of-concept ex-
periments we consider the following threat model: The
attacker performs evasion attacks and tries to alter the
classification output of our NN in a targeted manner.
For this purpose, the attacker uses various state-of-the-
art attack algorithms. The added adversarial perturbations
are desired to be small enough, so they are imperceptible
for a human expert, which is consistent with the common
definition of adversarial examples. Finally, we consider a
white-box scenario in which the attacker performs simple
attacks to the NN only. Hence, the attacker is not aware
of our proposed defense strategy. With this measure, we
provide an unaltered evaluation of the performance of our
detection scheme allowing comparison to related methods.

Threat Model for Adaptive Attacks. For the adaptive
attacks which we describe in more detail in Section 7, we
need to adjust the attacker’s knowledge. Here, the attacker
is aware of our proposed defense method and mounts and
adaptive attack leveraging this knowledge.

4. Methodology
In this section we introduce our main concept to detect

adversarial examples during classification time. The core
idea originates from our hypothesis as initially shown in
Section 1: Adversarial examples provoke a distinctive be-
havior of dense layer neuron activations such that attacks
become detectable. We provide a detailed description on
how to expand and build upon this idea in the following.

Fig. 1 shows an overview of our concept and underly-
ing data flow. Joining the individual steps provides an end-
to-end pipeline for fully automated adversarial example
detection.

Our method is designed to help developers and main-
tainers of NNs to secure their models against attacks.
Hence, we assume access to the fully trained model as
well as (read-only) access to the benign training dataset
Dbenign. We refer to the model we want to secure as the
target model Ntarget. Our aim is to generate a secure
model Nsecure

target that throws an alarm signal whenever an
adversarial example is being processed. We achieve this as
follows: We generate adversarial examples and extract the
dense layer neuron coverage of the target model, triggered
by benign and adversarial inputs. Using the extracted
coverage, we train an alarm model that enables secure
operation of our target model.

4.1. Generating Adversarial Examples

In the first step of our concept, we generate adversarial
examples Dadv for our target model Ntarget. We craft
these examples in a white-box manner by exploiting all
available information. It is important to note, that we
create adversarial examples for each class of the dataset.
Hence, we try to push the generated adversarial examples
to be misclassified with an equal distribution among all
remaining (i.e. false) classes. This is a crucial step dur-
ing the generation phase in order to cover all possible
cases which might occur during the application of our
method in the field. We summarize the produced adver-
sarial examples in the dataset Dadv. The outputs of the
adversarial example generator, i.e., the elements of Dadv,
are labeled as adversarial, while the original unmutated
samples Dbenign are labeled as benign. For the adversarial
example generation, we use a wide range of adversarial
crafting methods, including state-of-the-art techniques. As
we discussed in Section 2, the attacks do not only differ
in success rates but also in their detectability. By covering
the currently strongest attacks we try to circumvent this
issue. Moreover, to cover the case of black-box attacks,
we recommend using transferred adversarial examples as
well. It is important to note that only mutated examples
should be considered which lead to misclassifications in
Ntarget.

4.2. Extracting Dense Layer Neuron Coverage

In this step, we observe the target model’s behavior
while processing benign and adversarial inputs. We re-
fer to this step as feature extraction. Here, the datasets
Dbenign and Dadv are fed to the trained target model
which performs classifications using the individual sam-
ples. Since the feature extraction is not part of the actual
function and objective of Ntarget, we omit its classifica-
tion outputs. Instead, we extract the activation values of
all available dense layers and concatenate them to one
sequence for each input. The resulting datasets, which
hold the sequences for all samples, are called Ibenign and
Iadv, respectively. For further usage, we adopt the labels to
distinguish between adversarial and benign samples. The
dataset I<attackname> holds the target model’s activation
value sequences for all benign and adversarial examples
for one specific attack method. We preserve this separation
of the activation value sequences, since we assume the
different attack methods to have characteristic impacts
on the behavior of the target and the resulting features.
This not only enables us to detect the individual attacks,
but also to assess the impact of the individual crafting
methods.

4.3. Training an Alarm Model

The dense-layer neuron coverage we extracted in the
previous step builds the basis for our core concept to
detect adversarial examples. Assuming that this coverage
contains information about the model, its behavior, and the
input, we require a supplementary analysis of the extracted
information.

Previous work [58], as discussed in Section 2.2.4, fol-
lows a similar idea. The authors try to extract information

Adversarial
Dataset

Original
Dataset

Mixed dataset
(input for target neural

network)

Is the classified
example adversarial?

Continue classification

Return
alarm

Original
Dataset

1. Create adversarial
examples

3. Extract features during
classification of mixed

dataset

Mixed feature data set
(input for alarm neural

network)

Adversarial
Features

Benign
Features

2. Classify mixed dataset
(= attack scenario)

4. Train the
alarm neural

network

No

Yes

Trained Target NN Alarm NN

Figure 1: Overview of our concept showing the required neural networks, datasets, and calculations.

from neural layers and further deliberately process them
to detect adversarial images. However, taking information
directly from all dense layers of the trained model is more
efficient providing an end-to-end solution without further
processing steps.

Accordingly, we propose to interpret the analysis of
the dense layer features as a binary classification, which
generalizes well over different scenarios and model ar-
chitectures: Instead of including hands-on measures and
distinguishing between different scenarios, we train an
additional NN to perform the required actions which we
call alarm model, Nalarm.

To train the alarm model, we use the features stored
in I<attackname>. Therefore, the network is trained to
distinguish between activation values observed during the
classification of benign and adversarial features. In the
final secure operation phase, Nalarm performs a binary
classification of newly extracted features provoked by the
input samples fed to Ntarget. This enables the adversarial
example detection process running alongside the original
classification purpose of Ntarget.

The architecture of the alarm model heavily influences
the success of our approach. Different architectures need
to be tested against each other to provide a viable well
generalizing solution. In Section 5, we recommend a
specific architecture. Still, future work needs to further
investigate this part of the concept.

Note, that we recommend to create one alarm model
for each introduced attack method. The attack methods
differ in their approach and complexity and thus influence
the neuron activation patterns distinctively. Hence, using a
set of different alarm models allows us to detect a broader
range of attacks. Furthermore, we are able to evaluate
the capability of each alarm model version of detecting
different attack methods. This provides information on the
applicability of our concept when detecting future attack
methods.

4.4. Concept Overview

We present an overview of our approach with Algo-
rithm 1. The application of our method in a real-world

scenario can be divided into two steps: the initialization
and secure operation.

In the initialization phase, we create adversarial exam-
ples and perform the according feature extraction steps.
We have shown the importance of using different attack
methods to create the adversarial examples. This ulti-
mately leads to a group of alarm models, each capable
of detecting adversarial examples created by one specific
attack method.

In the second phase, during the secure operation of the
target model, we continuously extract the features during
classification of new, unseen samples, Dtest. The resulting
activation sequences are fed to all available alarm models
performing binary classifications. If the alarm models’
outputs indicate attacks, our framework throws an alarm
signal and a human expert is consulted to evaluate the
current input. Here, the maintainer chooses if one assumes
an attack based on one or more alarm signals, majority
votes, or all alarm models synchronously indicating such
an event. This use-case-depended choice provides differ-
ent levels of security.

5. Implementation and Experimental Setup

In the following, we present details regarding our
proof-of-concept implementation and our experimental
setup. We evaluate the results in the next section.

5.1. Considered Datasets

For our main experiments, we considered the MNIST
[61] and CIFAR10 [62] image datasets. This allows a
comparison of our method to state-of-the art defense tech-
niques. Furthermore, the usage of image datasets enables
us to better visualize the adversarial examples and evaluate
the performance of different attack methods.

The MNIST dataset consists of 70 000 handwritten
digits ranging from 0 to 9 of which 60 000 build the train-
ing set and 10 000 the test set. Each digit is represented
by 28× 28 gray-scale pixels.

CIFAR10 consists of 60 000 colored images of which
again 10 000 images build the test set. Each image is

Input: Dbenign, Dtest, Ntarget, Nalarm

Result: Nsecure
target

for Initialization do
Dadv ← CreateAdvExamples(Dbenign,
Ntarget);
Ibenign ← ExtractInformation(Dadv, Ntarget);
Iadv ← ExtractInformation(Dbenign, Ntarget);
Nalarm ← Train(NAlarm, Ibenign, Iadv);

end
while Secure Operation do

while 1 do
x ← Sample(Dtest);
ytarget ← Classify(Ntarget, x);
iytarget ← ExtractInformation(x, Ntarget);
yalarm ← Classify(Nalarm, iytarget);
if yalarm == 1 then

Alarm();
ConsultHumanExpert();

end
end

end
Algorithm 1: Main algorithm, divided in an initial-
ization and a secure operation phase.

stored using 32× 32× 3 pixels, which makes this dataset
more difficult to classify.

To prove detectability of adversarial examples in the
natural language processing (NLP) context, we used the
IMDb dataset of movie reviews [63]. Both the train and
test set contain 25 000 samples each. For both subsets
positive and negative reviews are distributed evenly.

The audio examples we considered during our tests
are drawn from the Mozilla Common Voice dataset [64],
which contains 803 hours of recorded human sentences.
Contrary to the above mentioned datasets, the instances
in the Common Voice dataset are used for speech-to-
text conversions rather than being classified into known
classes.

5.2. Target Models

Throughout the proof of concept, we used state-of-the
art target models in order to keep a close relation to real-
word scenarios. In Table 1 we sum up the used models
and show their training and test accuracy as well as a short
description of the individual architectures. For MNIST, we
chose LeNet [65] and a simple Multi-Layer-Perceptron
(MLP) [66], we refer to as kerasExM. For CIFAR10 we
considered ResNet [67] and a deep CNN [68], we refer
to as kerasExC.

In order to evaluate if our method can generally be
applied to a wide range of DL architectures, we addi-
tionally conducted experiments using the following two
examples: On the one hand, we included a Long Short
Term Memory (LSTM) based target model. Here we
chose an architecture which achieves remarkable results
on the MNIST dataset. On the other hand, we considered
a capsule network (CapsuleNN). This type of NN is
shown to be more robust to white-box attacks compared
to conventional CNNs [69].

For our NLP-based tests, we used an LSTM target
model with one embedding layer. Finally, for the audio

Original image FGSM C&W DeepFool BIM PGD
MNIST

CIFAR10

Original image FGSM C&W DeepFool BIM PGD

Figure 2: Adversarial images created with: FGSM, C&W,
DeepFool, BIM, PGD. The top images are based on the
MNIST dataset and are crafted on the target model LeNet.
The bottom images are based on the CIFAR10 dataset and
are crafted on the target model kerasExC.

experiments we chose DeepSpeech (version 0.4.1) [70]
which converts speech to text. Since it is pretrained we
did not add its training and test accuracy to Table 1.

CapsuleNN and ResNet are trained using the adam
optimizer [71] while the remaining models are trained
with stochastic gradient descent.

5.3. Considered Attack Methods

We evaluated the detectability of the following attack
methods: FGSM, C&W, DeepFool, PGD, and BIM. The
motivation to choose them originates from the nature
and popularity of these methods. We included diverse
attacks, such that differences in the basic idea can be seen.
Moreover, we payed attention to add attacks which differ
in strength and complexity. The C&W attack, for instance,
is currently considered to be the most powerful white-
box attack. Hence, this and future adversarial detection
schemes need to be tested against this method. Fig. 2
shows a series of adversarial images for both datasets
crafted with the above mentioned techniques.

Alongside the five stated methods, we additionally
considered black-box transfer attacks. Here we created
adversarial images in a white-box setup on model A and
transferred the resulting examples to attack model B.

Since the actual crafting and implementation of the
attacks is not part of our concept, we used the fool-
box framework [74] to generate adversarial examples for
MNIST and CIFAR10. To create adversarial examples
based on the Common Voice dataset, we refer to [75].
Finally, for the IMDb dataset we created an algorithm to
produce adversarial examples, which we briefly describe
in Appendix D. In future work, we will further explore
and refine this attack method.

TABLE 1: ARCHITECTURES AND PERFORMANCE OF THE TARGET MODELS USED DURING THE EXPERIMENTS

Dataset Model Name Model Details Training Accuracy Test Accuracy

MNIST

LeNet [65]

– 2 convolutional layers with filter
size 5
– each convolutional layer is fol-
lowed by a max-pooling layer with
size 2
– 2 dense layers after each max-
pooling layer

0.976 0.987

kerasExM [66] – one hidden layer with 512 neu-
rons 0.972 0.985

CapsuleNN [72] – 10 capsules each of size 6 0.992 0.991

LSTM [73]
– 1 LSTM layer followed by two
dense layers with 64 and 32 neu-
rons

0.975 0.978

CIFAR10 kerasExC [68]

– 4 convolutional layers with filter
of size 3
– each pair of convolutional layers
is followed by a max-pooling layer
of size 2
– last hidden layer of dimension
512 is fully connected

0.852 0.790

ResNet [67] – 3 blocks followed by an average
pooling size of 8 0.961 0.790

IMDb LSTM (for NLP) – 1 embedding layer
– 1 64-neuron dense layer 0.996 0.81

Mozilla Common Voice DeepSpeech [70]
– containing 2 parts
– convolutional and recurrent net-
work

– –

5.4. Alarm Model Architecture and Training

During our proof of concept, we exclusively used one
well generalizing alarm model architecture to detect adver-
sarial examples for MNIST and CIFAR10. We restricted
the space of tunable parameters to show the generality and
simplicity of our concept. Neither the used dataset nor
the applied target model, which needs to be protected,
affected our alarm model architecture. For future work
or in real-world applications, a deliberate choice of the
alarm model will further improve the strength of our
concept. In this paper, we used a DNN with six dense
layers which we trained for ten epochs and a batch-size
of 100 in each scenario. We used the adam optimizer
[71] with a learning rate of 0.001. In some cases this
alarm model suffered from underfitting. A more detailed
description of the architecture can be found in Appendix
A. As the alarm model performs a binary classification
the single output logit decides about the nature of the
analyzed input. Throughout this paper we did not optimize
the decision threshold of this logit which influences the
trade-off between precision and recall during detection.

5.5. Main Test Scenario

We assume ourselves in the position of the trained
model’s maintainer and try to increase its trustworthiness
under the consideration of our main threat model. Each
step we present was performed for all introduced attack
methods. For the sake of simplicity we show each step
only once.

First, we crafted adversarial images using the above
stated methods. During this process, we payed attention
to the way the datasets have been split beforehand. Con-
sequently, we created two separate adversarial datasets,
based on the train and test subsets. The samples in the
test set simulate inputs fed to the target during an attack

while being used in the field. Additionally, we can check
detectability of adversarial examples which are based on
unseen benign inputs to rule out a detection bias. We call
the datasets Dtrain

adv and Dtest
adv . To form Dtrain

adv and Dtest
adv ,

we created (60 000, 10 000) for MNIST and (50 000,
10 000) adversarial examples for CIFAR10. We let Ntarget

classify all samples in the four datasets and stored the
activation sequences in Itrainbenign, Itestbenign, Itrainadv , and Itestadv .
Each individual set contains features extracted during the
classification of benign and adversarial samples while we
preserved the division between test and training samples.
This allowed a sound evaluation during the proof of
concept. Note, that we neglected this split of the datasets
in Algorithm 1 for the sake of simplicity.

In the second step, we used Itrainadv and Itrainbenign to train
the alarm model. Hence, for each target model and attack
method, we created one specific alarm model which we
call Nalarm. To test our capability of detecting adversarial
examples, we let Nalarm classify all samples in Itestbenign

and Itestadv .

To further show the generality of our concept we
performed cross-testing and evaluated the robustness of
our approach towards new attack methods. Thus, we
tested a trained alarm model against the features of a
different attack. Put simply, we trained the alarm model
with activation values triggered by one specific attack and
detected adversarial examples created by another attack
method. With this, we simulated the scenario in which
we encounter a new and yet unknown attack.

Furthermore, we created a combined alarm model
N combined

alarm which is trained using features triggered by
various attacks. Here, we verified if considering diverse
information, based on a wider range of attacks, improves
the alarm model’s performance and provides a stronger
detection capability.

5.6. Additional Experiments

We divided our supplementary tests into four parts to
further establish confidence in our approach.

In the first part, we used the previously created ad-
versarial images for the MNIST dataset and conducted
transfer attacks targeting an LSTM neural network and
a capsule network. This experiment investigated whether
our approach can be applied in the context of different
DL architectures or not. Both targets contain dense layers
from which we extracted the activations values in order
to train our alarm model.

In the second part, we ran two experiments with the
regular target models classifying MNIST and CIFAR10
images. With the first test we analyzed if our concept
is robust to noisy input images. Hence, we excluded the
possible effect in which our framework is solely able to
distinguish between clean benign images and adversarial
images containing perturbations. For this purpose, we
created noisy benign images with the same amount of
distortion as their adversarial counterparts. We calculated
the distances between the original and adversarial images
with respect to the used distance metric of the attack. The
resulting datasets contain original, adversarial, and benign
noisy images. To provide comparability, we preserved the
distribution of benign and adversarial examples in this
supplementary test set.

Subsequently, in the third part we provided evidence
for our initial hypothesis of the paper presented in Section
4. We assume that adversarial examples provoke a unique
activation pattern in the dense layers which can be ex-
ploited to detect attacks. For this purpose, we analyzed
the dense layer activation values of the target models
during misclassification of original, benign inputs. Then,
we extracted the according features and trained an alarm
model to detect such incorrectly classified inputs. If our
main hypothesis holds true, misclassified original inputs
will not be easily detectable. The behavior of the target
model should be similar during correct and incorrect clas-
sifications of benign inputs. Solely adversarial examples
are assumed to provide a distinct and detectable behavior.

In the fourth part, we tested our concept in the context
of two additional types of datasets. We investigated if
we are able to detect adversarial examples in NLP and
audio datasets. This test gives first evidence on the ap-
plicability in numerous DL-based environments. State-of-
the-art defense methods mostly focus on image processing
target models. Therefore, proving the applicability of our
concept in additional types of datasets poses a significant
step towards more robust defense methods. We introduce
the test environment and results in a stand-alone paragraph
in Section 6.3.

Finally we perform and evaluate adaptive attacks
which we describe in more detail in Section 7.

5.7. Experiment Overview

With the following list we summarize our performed
experiments and provide an orientation for our subsequent
evaluation. In summary, we performed the following ex-
periments:

• Main proof of concept:

– Detecting one specific attack method
– Detecting new attack methods
– Detecting multiple attack methods

• Additional experiments:

– LSTM and capsule targets
– Noisy inputs
– Misclassified inputs
– Detecting NLP and audio attacks

• Adaptive attacks

6. Evaluation

In this section, we show our experimental results and
evaluate the performance of our detection method. We
split this into three parts. First, we discuss our analysis
of the extracted features and show their distribution using
a representative example. Second, we present the main
results accumulated during our experiments. This includes
the performance of the different alarm models while de-
tecting adversarial examples. Third, we present the results
of our supplementary experiments.

6.1. Feature Analysis

As the extracted features are the core of our hypothesis
and concept, we illustrate the major findings during our
analysis. In Fig. 3 we show neuron activation sequences
for the LeNet target model and all attack methods. For
better visualization we reduced the dimensionality of the
data using PCA and t-distributed stochastic neighbor em-
bedding (t-SNE). The figures show the neuron coverage
of the dense layers during the classification of benign and
adversarial images. Gray dots represent benign instances
and red crosses indicate adversarial ones. We can clearly
see a difference in the dense-layer activation patterns.
Interestingly, we can see artifacts of the ten classes of
the MNIST dataset in the t-SNE figures. This finding
gives first evidence on the verity of our initial hypoth-
esis. Furthermore, we can show a first estimate for the
complexity and detectability of the attack methods. The
PCA data points of the C&W-based activation sequences
overlap to a higher extent than for the remaining methods.
This suggests a more challenging detection of the C&W
attack. Note, that since we want to provide an end-to-end
framework to detect adversarial examples, we directly use
the raw extracted data.

6.2. Results of the Main Proof-of-Concept

In this section, we present the performance of our
concept using the differently trained alarm models. We
assess the success of our detection method with the f1-
score. Furthermore we present the mean false positive and
false negative rates.

Detecting One Specific Attack Method. During the
proof-of-concept, we conducted numerous experiments.
For the sake of simplicity and readability, we exclusively
include results significant for the proof of our main idea
and hypothesis. We provide the remaining results, tables,

FGSM BIM PGD

PC
A

+ Adversary Benign

T-
SN

E

DeepFoolC&W

Figure 3: Visualization of the extracted features during the classification of MNIST-based adversarial and benign images
for the LeNet target model. The dimensionality of the features was reduced using PCA and t-SNE. Each column shows
the plots for one attack method. The gray dots and red crosses represent the benign and adversarial samples, respectively.

confusion matrices, and figures in the appendix of this
paper.

In Table 2, we list the f1-scores of the individual alarm
models when tested against their dedicated attack method.
We can see a strong detection capability for all attack
methods and target models with the MNIST dataset. The
respective f1-scores range above 0.9. For the CIFAR10
dataset, our framework detects the majority of attacks,
posing as a viable solution for real-world applications.
In Table 13 (Appendix B) we show the achieved preci-
sion and recall values of this experiment. With further
optimizations of the alarm model’s output threshold, the
performance of the overall system can be adapted to the
analyzed data and use-case.

Detecting New Attack Methods. With the following
cross-testing experiments we analyze if our concept is
capable of detecting new, unseen attacks. We train the
alarm model with features provoked by one attack method
and test it with features based on the other attacks. In
summary, for both datasets and for each target model
we tested seven alarm models against six attack methods.
Five of the seven alarm models are based on the attack
methods FGSM, C&W, DeepFool, PGD, and BIM. The
two additional alarm models are the combined one which
we will introduce below, and the alarm model trained
using features extracted during transfer attacks. The result-
space of the cross-tests exceeds the frame of this paper.
Hence, in Table 3 we summarize the mean performance
of our approach during this experiment while showing the
individual result values in Appendix B. With the results
we report successful detection of adversarial examples,
for which the underlying method has not been known
beforehand. Thus, our method likely detects future, yet
unknown attacks and can therefore be employed in real-
world scenarios.

Detecting Multiple Attack Methods. To evaluate if train-
ing on a combination of features based on multiple attack
methods improves the performance of our method, we
created a combined alarm model for each dataset. For
each target model, its combined alarm model is trained
with features extracted during the evaluation of all attack

methods. Table 4 provides an overview of this experi-
ment. The f1-scores show that the combined alarm models
are able to detect all tested adversarial attack methods.
Comparing the results to Table 2, we can report similar
results with the combined models. Regarding the trade-
off between robustness against multiple attacks and the
resulting detection capability we can recommend using a
combined model during the application in the field.

Error Rates. During detection of adversarial examples
it is important to evaluate the error rates which heav-
ily influence the real-world applicability of the system.
We performed detection runs on multiple nonoverlapping
batches of our test dataset and show the resulting mean
rates with the according standard deviations in Appendix
C. For MNIST, the mean false positive and false negative
rates are 0.009 and 0.019, respectively. Similarly, for
CIFAR10 we report mean error rates of 0.164 and 0.209,
respectively. For both settings our method does not miss
a disproportionate amount of adversarial examples. This
is an important finding with regard to the applicability
in a real-world setup. Still further use-case and dataset-
depended optimizations are required.

6.3. Results of Additional Experiments

LSTM and Capsule Targets. During our tests with an
LSTM and capsule target network, we were able to detect
adversarial images based on the MNIST dataset with
f1-scores of 0.929 and 0.936, respectively. The positive
results emphasize the applicability of our concept for a
wide range of neural network architectures using dense
layers. Furthermore, with this experiment we make first
steps towards applying our method to dense-layer-free
target models. Note, that the used LSTM target model
incorporates two dense layers after the LSTM unit. Even
though, the main learning power resides in the LSTM
unit, our framework can leverage the information from the
additional dense layers. This suggests that adding dense
layers to dense-layer-free target models again enables the
application of our concept.

Noisy Inputs. In Table 5, we show the results of the tests
containing noisy images. The performance of the individ-

TABLE 2: F1-SCORES OF THE INDIVIDUAL ALARM MODELS WHEN TRAINED AND TESTED WITH THE FEATURES
EXTRACTED USING THE CORRESPONDING ATTACK METHOD. MAIN RESULTS OF THE PROOF OF CONCEPT

Dataset Target Model F1-Score of the Alarm Models with the according attacks:
FGSM C&W DeepFool PGD BIM

MNIST LeNet 0.988 0.977 0.981 0.991 0.990
kerasExM 0.992 0.975 0.982 0.992 0.991

CIFAR10 kerasExC 0.847 0.733 0.855 0.843 0.852
ResNet 0.815 0.727 0.833 0.833 0.832

TABLE 3: F1-SCORES OF THE INDIVIDUAL ALARM MODELS WHEN DETECTING ALL ATTACK METHODS. EACH
ALARM MODEL IS TRAINED WITH FEATURES PROVOKED BY ONE ATTACK AND TESTED WITH A COMBINED FEATURE
SET INCLUDING UNSEEN ATTACK METHODS

Dataset Target Model F1- Score of the individual Alarm Models with all attacks, model name:
FGSM C&W DeepFool PGD BIM Transfer Combined

MNIST LeNet 0.943 0.956 0.961 0.920 0.924 0.957 0.980
kerasExM 0.927 0.970 0.959 0.915 0.923 0.965 0.982

CIFAR10 kerasExC 0.783 0.663 0.786 0.780 0.785 0.735 0.767
ResNet 0.761 0.722 0.778 0.769 0.771 0.568 0.796

TABLE 4: F1-SCORES OF THE COMBINED ALARM MODELS WHEN TESTED AGAINST EACH ATTACK SEPARATELY AND
ALL ATTACKS AT ONCE

Dataset Target Model F1-Score of the combined Alarm Model with:
FGSM C&W DeepFool PGD BIM Transfer Combined

MNIST LeNet 0.981 0.973 0.974 0.981 0.981 0.930 0.980
kerasExM 0.984 0.972 0.977 0.984 0.984 0.946 0.982

CIFAR10 kerasExC 0.771 0.740 0.771 0.772 0.772 0.741 0.767
ResNet 0.812 0.686 0.818 0.820 0.819 0.750 0.796

ual alarm models is decreased by 10% in the worst case.
Even though, our method can still detect a fair amount of
attacks, noise noticeably reduces the performance of the
system.

TABLE 5: PERFORMANCE WHEN DETECTING ADVER-
SARIAL EXAMPLES AMONG CLEAN AND NOISY BENIGN
IMAGES

Dataset Target Model Attack F1-score

MNIST LeNet FGSM 0.896
C&W 0.913

CIFAR10 ResNet FGSM 0.791

Misclassified Inputs. In this experiment we evaluated if
our approach allows detection of original but incorrectly
classified samples. We argued that adversarial examples
provoke a distinct pattern in the activation values enabling
detection. Hence, training an alarm model which allows
detection of misclassified inputs would contradict our
main hypothesis. During our experiments with the MNIST
and CIFAR10 datasets, we were not able to train such an
alarm model. This indicates that our intuition holds true.
Contrary to adversarial examples, misclassified original
inputs provoke a behavior of the target model identical to
correctly classified inputs and are thus correctly identified
as benign by our system.

Detecting NLP and Audio Attacks. With the follow-
ing experiments, we evaluated the generalizability of our
method to different application domains. During this anal-
ysis, we crafted adversarial examples based on an NLP
and audio dataset. As previously introduced, we used the
IMDb and Mozilla Common Voice datasets. We assessed

whether our framework is able to detect adversarial exam-
ples of this domain when processed by according target
models.

The process of generating adversarial examples for the
two datasets is not part of the contribution of this paper.
Nevertheless, some basic notes are worth mentioning.
With the IMDb dataset, we used Algorithm 2 (Appendix
D) to generate misclassified movie reviews. Instead of
adding or deleting words, we chose to replace words in
the individual instances. With this approach, we preserved
the lengths of the classified sentences and reduced the
distance between benign and adversarial examples. Here,
we are able to report a detection f1-score of 0.966.

For the audio dataset, we used Carlini and Wagner’s
approach to create adversarial examples [75]. Extracting
the features of the audio files leads to neuron activation
sequences of different lengths. This is the result of various
sampling rates during the recording of the original samples
in the dataset. To be able to perform binary classifications
using all feature instances, we used a different alarm
model architecture here. The alarm model contains one
LSTM layer followed by one output layer with two neu-
rons to enable the detection of attacks. For this dataset we
are able to detect adversarial examples with an f1-score
of 0.860.

7. Robustness Against Adaptive Attacks

In this section we evaluate adaptive white-box attacks
in which the attacker has perfect knowledge of the target
model and our detection method. For this purpose we
assume the second threat model presented in Section 3.
As shown by Carlini and Wagner [23], the majority of
proposed detection methods can easily be bypassed by an
adaptive attack.

7.1. Experimental Setup

To perform such an attack, we have to combine our
target and alarm models. We use the following function
G(x) to represent this combination of classifier and de-
tector building Nsecured:

G(x)i =

{
ZF (x)i, if i ≤ N
AD(x) ·max

j
ZF (x)j , if i = N + 1

where AD(x) = (2(maxj ZF (x)j > 0) − 1) · ZD(x) + 1
decides if our secured model will output an alarm signal
or not. Nsecured contains eleven output logits. The first
ten logits represent the classification output, while the
last logit shows the output of the detector. Note, that this
formula allows the first ten logits to be negative.

With G(x) we generated adversarial examples for
Nsecured, using the C&W method. Here, we used the
code published together with paper [76]. We performed
this attack on our four main target models: LeNet and
kerasExM for MNIST as well as kerasExC and ResNet
for CIFAR10.

7.2. Evaluation

To evaluate the robustness of our method against
adaptive attacks, we use the mean l2-distance between
adversarial and benign images to either fool Ntarget or
Nsecured as well as the attack success rates as metrics. We
generated adversarial images for Ntarget and Nsecured us-
ing the same attack parameters to preserve comparability.
This allows an estimation of the security improvement due
to our detection scheme. The attack parameters listed in
Appendix E are chosen to reach a 100% success rate when
attacking Ntarget building the baseline security level.

In Table 6 we summarize our results. The four secured
target models require a significantly higher l2-distortion
compared to their unsecured counterparts.

For the MNIST-based LeNet target model, our defense
method more than doubles the required mean l2-distance
to successfully attack Nsecured, compared to the unse-
cured version. Furthermore, we reduced the attack success
rate to 44.6%.

Similarly, for kerasExM we increase the mean l2-
distance to fool our secured model by 80.74%. We report
an attack success rate of 97.6%.

For CIFAR10 and the kerasExC target model we
achieve similar results. When attacking Ntarget, the mean
l2-distance is 0.430. In contrast to that, when attacking
Nsecured, the adversarial images show a mean l2-distance
of 0.853 with respect to their benign counterparts. More-
over, only 53.3% of adversarial examples of the adaptive
attack are successful.

Concerning our ResNet target model we are able to
report a minor improvement of its security level. This is
due to its complexity and size of the resulting feature
space. As mentioned above, we used the same alarm
model architecture for all test scenarios to show the
simplicity of our approach. In this case, a bigger alarm
model is required to cope with the extracted features more
efficiently.

With our numerical study we show the robustness
of our concept against adaptive attacks. To support our

TABLE 6: RESULTS OF ADAPTIVE ATTACKS

Dataset Target
Model

Attack
Success Rate

Mean
l2 Distortion

unsecure secure unsecure secure

MNIST LeNet 100% 44.6% 2.171 4.422
KerasExM 100% 97.6% 1.506 2.722

CIFAR10 KerasExC 100% 53.3% 0.430 0.853
ResNet 100% 99.7% 0.133 0.378

conclusion, we show the adversarial examples which are
able to fool our secured kerasExM and kerasExC target
models in Fig. 4. For both datasets we show the original
images in the first and the adversarial counterparts in the
second row. We report a significant difference between
benign and adversarial images. The perturbations required
to fool our secured systems are clearly visible which
enables a human expert to identify the adversarial exam-
ples. This becomes even more clear when comparing the
images to the previously successful adversarial examples
in Fig. 2. With respect to our introduced threat models, we
emphasize that the resulting adversarial attacks may not
be considered successful. In our threat model we restricted
the capabilities of the attacker to mutate the inputs of our
target models, such that the changes are not easily visible
to a human expert. This is not fulfilled here. Hence, we
can report a significant security improvement of our target
DNNs, even during white-box adaptive attacks.

MNIST

CIFAR10

B
en

ig
n

A
dv

er
sa

ri
al

B
en

ig
n

A
dv

er
sa

ri
al

Figure 4: C&W-based adversarial images during adaptive
attacks. The first two rows show MNIST-based examples
for the kerasExM target model. The lower two rows are
based on CIFAR10 and kerasExC.

8. Discussion

With the in-depth experiments in this paper we show
the importance of the dense layers analysis in future NN
defense strategies. In Section 6, we sum up the most im-
portant results to underline our conclusion. Nonetheless,
some aspects regarding detection performance, transfer-

ability, and real-world applications, as well as a compar-
ison to related work, require further discussion.

First, we want to discuss the trade-off between false
positive and false negative errors during detection. With-
out optimizing the detection threshold of the alarm models
we report the false negative rate to be higher than the
false positive rate. Hence, we recommend further use-
case specific adaptations before deploying our method
in security-sensitive setups. Here, the base-rate fallacy is
worth mentioning. The number of false alarms is often
a crucial performance characteristic of attack detection
systems [77] and should not be neglected when aiming
to reduce the false negative rate.

Throughout our cross-testing experiments, we evalu-
ated the generality of our method. We give evidence for
the distinct behavior of NNs when confronted with adver-
sarial examples, independently of the used attack method.
This allows two main conclusions: Future, yet unknown
attacks seem detectable using our concept. Furthermore,
it allows a ranking of attack methods. This ranking is
based on two findings. First, the difficulty in detecting
each attack, expressed by the f1-score of the respective
alarm model. Secondly, by the performance of the alarm
model created for the attack itself when detecting exam-
ples crafted with other attack methods. As an example,
if we focus on the C&W attack on the ResNet target
model. We can clearly see that this attack method can
only be detected by the alarm model specifically created
for this purpose. Hence, we deduce the C&W attack being
the most powerful method used here. This correlates with
current findings in the field of adversarial attacks and
defense strategies: As discussed in Section 2, the C&W
attack is currently considered to be the most powerful
white-box attack.

A possible restriction our approach may suffer from is
the architecture of the model to protect. One could argue
that we are not able to detect attacks if the target model
does not incorporate dense layers. This can be ruled out
considering the following two concepts. The maintainer
of the target model creates a so-called substitute model
which performs the same task as the target model itself,
achieving a similar accuracy. If this substitute model uses
dense layers, we are again able to apply our concept. The
positive results during our experiments regarding transfer
attacks indicate the practicality of this idea. Alternatively,
additional dense layers may be added to the original
target model. Our experiments with LSTM target models
indicate the practicability of this idea as well. The target
models contain dense layers after the LSTM units in which
the main learning power resides. A thorough evaluation of
both solutions is out of scope in the context of this paper.

Finally, we want to emphasize the simplicity of our
approach. During our research on related work, we noticed
the defense strategies to be rather unintuitive and having
several sources of errors when not applied correctly. Our
method, in contrast, is easy to use and seems intuitively
reasonable. In addition, our method does not decrease
the accuracy of the model to protect when tested against
benign images, which is the case for some state-of-the-art
defense strategies. One important aspect when comparing
our method to related techniques is worth mentioning.
We did not optimize our framework to its full detection
capability. Note, that we solely used one alarm model

architecture during our main experiments on MNIST and
CIFAR10. Furthermore, we did not tune the training pro-
cess of the alarm models in relation to each target model.
We regard this as out of scope for this study. Moreover, it
shows the simplicity and generality of our approach. Even
with a generic setting, promising results can be achieved.
If the user further tunes the settings in a use-case-specific
manner, superior results are achievable. The drawback
of this approach is the limited possibility of comparing
our method directly to related work. As related detection
schemes are often optimally adapted to the underlying use-
case and dataset, a direct comparison would not lead to
meaningful conclusions. Therefore, we solely compared
our method to state-of-the-art techniques on a conceptual
level.

9. Conclusion

In this paper, we introduce a general end-to-end frame-
work to detect adversarial examples during classification
time. Our approach consists of two phases.

First, in the training phase we observe the dense-layer
activation patterns of the model to protect. For this pur-
pose, we extract the neuron coverage of the target model
to directly train a secondary NN we call alarm model.
This alarm model distinguishes between activations se-
quences extracted during the classification of benign and
adversarial inputs. This approach is motivated by our main
hypothesis that the dense layers of the target model carry
security sensitive information. Thus, the alarm model is
trained to detect malicious activity patterns triggered by
adversarial examples during classification time.

In the second phase, the target model runs in secure
operation mode, which is enabled by enhancing it with
our trained alarm model. When the target model classifies
new, unseen inputs, the alarm model runs in parallel and
produces an alarm if an adversarial example is being
processed by the target. This approach leaves all param-
eters — especially the accuracy — of the target model
untouched, while improving overall application robustness
significantly. In our proof-of-concept implementation, we
show the extensive capability of our approach to detect
adversarial examples in image, NLP, and audio datasets.
The evaluation results strongly indicate that we can not
only defend with high accuracy against state-of-the-art
adversarial examples, but also against future, yet unknown
attacks. Finally, with adaptive attacks we show that an
attacker needs to perform significantly more adversarial
perturbations to attack our detection-enhanced system,
compared to attacking the unsecured target model.

Finally, we see three points of interest for future work:
(1) Experiments regarding dense-layer-free target models.
This includes a comparison between substitute models and
adding additional dense layers to the original target mod-
els. (2) Further evaluation of the performance overhead
when detecting new and unknown attack methods, for
example training the alarm model with multiple attack
methods and detecting a single new attack. (3) A thor-
ough evaluation of the performance overhead compared
to related work and potential solutions to automatically
handle detected adversarial examples.

References

[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2818–2826, Jun. 2016.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, pp. 484–503, 2016.

[3] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang
et al., “End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[4] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K.
Jha, “Systematic poisoning attacks on and defenses for machine
learning in healthcare,” IEEE Journal of Biomedical and Health
Informatics, vol. 19, no. 6, pp. 1893–1905, Nov 2015.

[5] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine
learning to subvert your spam filter,” Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats, pp. 7:1–
7:9, 2008.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
International Conference on Learning Representations, 2014.

[7] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” Proceedings of the
26th Symposium on Operating Systems Principles, pp. 1–18, 2017.

[8] L. Ma, Y. Liu, J. Zhao, Y. Wang, F. Juefei-Xu, F. Zhang, J. Sun,
M. Xue, B. Li, C. Chen, and et al., “Deepgauge: multi-granularity
testing criteria for deep learning systems,” Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018.

[9] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural net-
works,” arXiv preprint arXiv:1803.04792, 2018.

[10] A. Odena and I. Goodfellow, “Tensorfuzz: Debugging neu-
ral networks with coverage-guided fuzzing,” arXiv preprint
arXiv:1807.10875, 2018.

[11] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, “Adversarial attacks and defences: A survey,”
arXiv preprint arXiv:1810.00069, 2018.

[12] R. Fletcher, Practical methods of optimization. John Wiley &
Sons, 2013.

[13] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” International Conference on Learning
Representations, 2015.

[14] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
arXiv preprint arXiv:1706.06083, 2017.

[16] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A
simple and accurate method to fool deep neural networks,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2574–2582, Jun. 2016.

[17] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” IEEE European Symposium on Security and Privacy, pp.
372–387, Mar. 2016.

[18] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Transactions on Evolutionary Com-
putation, pp. 1–1, 2019.

[19] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” IEEE Symposium on Security and Privacy (SP),
pp. 39–57, May 2017.

[20] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Uni-
versal adversarial perturbations,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 86–94, Jul. 2017.

[21] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” Proceedings of 5th
International Conference on Learning Representations, 2017.

[22] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” IEEE Access, vol. 6, pp.
14 410–14 430, 2018.

[23] N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, pp.
3–14, 2017.

[24] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” arXiv preprint arXiv:1611.01236, 2016.

[25] S. Sankaranarayanan, A. Jain, R. Chellappa, and S. N. Lim,
“Regularizing deep networks using efficient layerwise adversarial
training,” Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[26] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,
and P. McDaniel, “Ensemble adversarial training: Attacks and
defenses,” arXiv preprint arXiv:1705.07204, 2017.

[27] N. Narodytska and S. P. Kasiviswanathan, “Simple black-box
adversarial perturbations for deep networks,” arXiv preprint
arXiv:1612.06299, 2016.

[28] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
Proceedings of the Asia Conference on Computer and Communi-
cations Security, pp. 506–519, 2017.

[29] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the
effect of jpg compression on adversarial images,” arXiv preprint
arXiv:1608.00853, 2016.

[30] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering
adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

[31] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E.
Kounavis, and D. H. Chau, “Keeping the bad guys out: Protect-
ing and vaccinating deep learning with jpeg compression,” arXiv
preprint arXiv:1705.02900, 2017.

[32] R. Shin and D. Song, “Jpeg-resistant adversarial images,” NIPS
Workshop on Machine Learning and Computer Security, 2017.

[33] W. Xu, D. Evans, and Y. Qi, “Feature squeezing mitigates
and detects carlini/wagner adversarial examples,” arXiv preprint
arXiv:1705.10686, 2017.

[34] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detecting
adversarial image examples in deep neural networks with adaptive
noise reduction,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–1, 2018.

[35] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao, “Foveation-
based mechanisms alleviate adversarial examples,” arXiv preprint
arXiv:1511.06292, 2015.

[36] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adver-
sarial examples for semantic segmentation and object detection,”
IEEE International Conference on Computer Vision (ICCV), pp.
1378–1387, Oct. 2017.

[37] Q. Wang, W. Guo, K. Zhang, I. Ororbia, G. Alexander, X. Xing,
X. Liu, and C. L. Giles, “Learning adversary-resistant deep neural
networks,” arXiv preprint arXiv:1612.01401, 2016.

[38] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robust-
ness and interpretability of deep neural networks by regularizing
their input gradients,” Thirty-second AAAI conference on artificial
intelligence, 2018.

[39] C. Lyu, K. Huang, and H. Liang, “A unified gradient regularization
family for adversarial examples,” IEEE International Conference
on Data Mining, pp. 301–309, Nov. 2015.

[40] U. Shaham, Y. Yamada, and S. Negahban, “Understanding ad-
versarial training: Increasing local stability of supervised models
through robust optimization,” Neurocomputing, vol. 307, pp. 195
– 204, 2018.

[41] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks,” IEEE Symposium on Security and Privacy (SP), pp.
582–597, May 2016.

[42] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” NIPS Deep Learning and Representation
Learning Workshop, 2015.

[43] N. Akhtar, J. Liu, and A. Mian, “Defense against universal adver-
sarial perturbations,” IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3389–3398, Jun. 2018.

[44] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” Advances in Neural Information Processing Systems
27, pp. 2672–2680, 2014.

[45] H. Lee, S. Han, and J. Lee, “Generative adversarial trainer:
Defense to adversarial perturbations with gan,” arXiv preprint
arXiv:1705.03387, 2017.

[46] G. Jin, S. Shen, D. Zhang, F. Dai, and Y. Zhang, “Ape-gan:
Adversarial perturbation elimination with gan,” IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3842–3846, May 2019.

[47] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN:
Protecting classifiers against adversarial attacks using generative
models,” International Conference on Learning Representations,
2018.

[48] S. Baluja and I. Fischer, “Adversarial transformation networks:
Learning to generate adversarial examples,” arXiv preprint
arXiv:1703.09387, 2017.

[49] D. Hendrycks and K. Gimpel, “Visible progress on adversarial
images and a new saliency map,” arXiv preprint arXiv:1608.00530,
2016.

[50] Z. Gong, W. Wang, and W.-S. Ku, “Adversarial and clean data are
not twins,” arXiv preprint arXiv:1704.04960, 2017.

[51] D. Meng and H. Chen, “Magnet: a two-pronged defense against ad-
versarial examples,” Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, pp. 135–147, 2017.

[52] N. Carlini and D. Wagner, “Magnet and ”efficient defenses against
adversarial attacks” are not robust to adversarial examples,” arXiv
preprint arXiv:1711.08478, 2017.

[53] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. Mc-
Daniel, “On the (statistical) detection of adversarial examples,”
arXiv preprint arXiv:1702.06280, 2017.

[54] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran,
“Blocking transferability of adversarial examples in black-box
learning systems,” arXiv preprint arXiv:1703.04318, 2017.

[55] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On de-
tecting adversarial perturbations,” Proceedings of 5th International
Conference on Learning Representations (ICLR), 2017.

[56] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and
rejecting adversarial examples robustly,” IEEE International Con-
ference on Computer Vision (ICCV), pp. 446–454, Oct. 2017.

[57] X. Li and F. Li, “Adversarial examples detection in deep networks
with convolutional filter statistics,” IEEE International Conference
on Computer Vision (ICCV), pp. 5775–5783, Oct. 2017.

[58] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner,
“Detecting adversarial samples from artifacts,” arXiv preprint
arXiv:1703.00410, 2017.

[59] S. Ma, Y. Liu, G. Tao, W. Lee, and X. Zhang, “NIC: detect-
ing adversarial samples with neural network invariant checking,”
26th Annual Network and Distributed System Security Symposium,
NDSS, San Diego, California, USA, Feb. 2019.

[60] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber,
D. Tsipras, I. Goodfellow, A. Madry, and A. Kurakin, “On eval-
uating adversarial robustness,” arXiv preprint arXiv:1902.06705,
2019.

[61] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 248–255,
Jun. 2009.

[62] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[63] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,
and C. Potts, “Learning word vectors for sentiment analysis,”
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pp.
142–150, Jun. 2011.

[64] “Mozilla Common Voice dataset,” accessed: 2019-05-20. [Online].
Available: https://voice.mozilla.org/datasets

[65] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural Comput., vol. 1, no. 4, pp.
541–551, Dec. 1989.

[66] “Keras Convolutional Neural Network for MNIST,” accessed:
2019-05-20. [Online]. Available: https://keras.io/examples/mnist
cnn/

[67] “ResNet for CIFAR10,” accessed: 2019-05-20. [Online]. Available:
https://keras.io/examples/cifar10 resnet/

[68] “Keras Convolutional Neural Network for CIFAR10,” accessed:
2019-05-20. [Online]. Available: https://keras.io/examples/cifar10
cnn/

[69] N. Frosst, S. Sabour, and G. E. Hinton, “DARCCC: detecting
adversaries by reconstruction from class conditional capsules,”
arXiv preprint arXiv:1811.06969, 2018.

[70] “Mozilla Project DeepSpeech,” accessed: 2019-05-20. [Online].
Available: https://github.com/mozilla/DeepSpeech

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[72] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” Advances in Neural Information Processing Systems 30,
pp. 3856–3866, 2017.

[73] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[74] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox
to benchmark the robustness of machine learning models,” arXiv
preprint arXiv:1707.04131, 2017.

[75] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted
attacks on speech-to-text,” IEEE Security and Privacy Workshops
(SPW), pp. 1–7, May 2018.

[76] “Nicholas Carlini: Breaking Neural Network Detection Schemes,”
accessed: 2019-08-21. [Online]. Available: https://nicholas.carlini.
com/code/nn breaking detection

[77] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 3, p. 186–205,
Aug. 2000.

https://voice.mozilla.org/datasets
https://keras.io/examples/mnist_cnn/
https://keras.io/examples/mnist_cnn/
https://keras.io/examples/cifar10_resnet/
https://keras.io/examples/cifar10_cnn/
https://keras.io/examples/cifar10_cnn/
https://github.com/mozilla/DeepSpeech
https://nicholas.carlini.com/code/nn_breaking_detection
https://nicholas.carlini.com/code/nn_breaking_detection

Appendix A.
Alarm Model Architecture

In the following, we provide more information on the
architecture of the alarm model we used throughout this
paper. As we said before, the alarm model is a seven-
layer neural network. The input flatten-layer accepts the
concatenated extracted features, while the output layer
contains two softmax-neurons in order to perform a binary
classification. As hidden layers, we exclusively chose
dense layers with the following amount of Relu-neurons
for each layer: 112, 100, 300, 200, 77. We trained this
model for ten epochs and a batch size of 100.

Appendix B.
All Result Values

In the Tables 9, 10, 11, and 12 we present all result
values gained during the proof of concept. The gray cells
in each table show the accuracy and f1-score of one
specific alarm model when tested against its dedicated
attack method. We emphasize the best test result in each
table in bold. In Table 13 we summarize the precision and
recall for our main experiments shown in Table 2.

Appendix C.
Confusion Matrix Values

In Table 14 we show the confusion matrix values of
each performed test. Note, that we tested the alarm models
against multiple nonoverlapping batches of test data to
show the standard deviation of the according results.

Appendix D.
Adversarial Example Generation for the NLP
Scenario

With Algorithm 2 we generated adversarial examples
for our target model classifying IMDb reviews. The target
model performs a binary classification and tries to distin-
guish between positive and negative reviews.

Appendix E.
C&W Attack Parameters for the Adaptive
Attack

Table 7 shows the attack parameters of the C&W at-
tack during the adaptive white-box attacks for the MNIST
dataset. Table 8 shows the attack parameters of the C&W
attack during the adaptive white-box attacks for the CI-
FAR10 dataset.

TABLE 7: C&W ATTACK PARAMETERS DURING THE
ADAPTIVE ATTACK FOR MNIST

Parameter Name Parameter Value
max-iteration 2000
batch-size 100
learning-rate 0.1
binary-search-steps 5

Data: IMDb reviews
Result: adversarial IMDb reviews
train a Word2Vec Model with all reviews;
randomly pick one word to start;
while not at the end of this document do

find N most similar words of current word
with Word2Vec;

for substitute ← next most similar word do
replace the current word with the
substitute;

predict and calculate the margin;
if margin decrease then

break
end

end
if margin < MarginThreshold then

break
else

recover the current word to the original
word;

move to next word;
end

end
Algorithm 2: Generation of adversarial examples in
the IMDb dataset containing movie reviews.

TABLE 8: C&W ATTACK PARAMETERS DURING THE
ADAPTIVE ATTACK FOR CIFAR10

Parameter Name Parameter Value
max-iteration 200
batch-size 100
learning-rate 0.01
binary-search-steps 3

TABLE 9: ALL RESULT VALUES FOR THE MNIST DATASET AND TARGET MODEL LeNet

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.988 0.988 0.802 0.758 0.953 0.945 0.987 0.987 0.987 0.987 0.945 0.943 0.924 0.840
C&W 0.943 0.942 0.977 0.977 0.943 0.933 0.957 0.956 0.958 0.957 0.957 0.956 0.951 0.905
DeepFool 0.987 0.987 0.862 0.843 0.983 0.981 0.987 0.987 0.987 0.987 0.962 0.961 0.930 0.857
PGD 0.989 0.989 0.719 0.615 0.935 0.921 0.991 0.991 0.991 0.991 0.925 0.920 0.895 0.760
BIM 0.986 0.986 0.740 0.655 0.933 0.920 0.990 0.990 0.990 0.990 0.929 0.924 0.899 0.772
all attacks combined 0.981 0.981 0.973 0.973 0.977 0.974 0.981 0.981 0.981 0.981 0.980 0.980 0.962 0.930
transferred examples 0.977 0.977 0.925 0.921 0.949 0.941 0.968 0.968 0.966 0.966 0.958 0.957 0.960 0.926

TABLE 10: ALL RESULT VALUES FOR THE MNIST DATASET AND TARGET MODEL kerasExM

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.992 0.992 0.767 0.700 0.917 0.892 0.992 0.992 0.985 0.985 0.931 0.927 0.893 0.792
C&W 0.973 0.973 0.975 0.975 0.967 0.962 0.968 0.968 0.961 0.960 0.970 0.970 0.959 0.933
DeepFool 0.986 0.986 0.867 0.850 0.985 0.982 0.988 0.988 0.980 0.980 0.960 0.959 0.928 0.871
PGD 0.992 0.991 0.734 0.641 0.899 0.865 0.992 0.992 0.986 0.986 0.920 0.915 0.885 0.773
BIM 0.992 0.992 0.752 0.674 0.912 0.886 0.992 0.992 0.991 0.991 0.928 0.923 0.893 0.791
all attacks combined 0.984 0.984 0.972 0.972 0.980 0.977 0.984 0.984 0.984 0.984 0.981 0.982 0.967 0.946
transferred examples 0.983 0.983 0.916 0.910 0.967 0.960 0.982 0.982 0.975 0.975 0.965 0.965 0.966 0.943

TABLE 11: ALL RESULT VALUES FOR THE CIFAR10 DATASET AND TARGET MODEL kerasExC

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.843 0.847 0.589 0.470 0.839 0.842 0.840 0.844 0.840 0.843 0.789 0.783 0.646 0.574
C&W 0.699 0.679 0.739 0.733 0.662 0.625 0.673 0.642 0.665 0.631 0.687 0.663 0.556 0.444
DeepFool 0.851 0.852 0.571 0.414 0.853 0.855 0.853 0.855 0.853 0.855 0.795 0.786 0.631 0.533
PGD 0.839 0.840 0.584 0.449 0.841 0.842 0.841 0.843 0.841 0.843 0.789 0.780 0.628 0.535
BIM 0.848 0.850 0.580 0.434 0.849 0.850 0.849 0.851 0.850 0.852 0.794 0.758 0.627 0.527
all attacks combined 0.708 0.771 0.678 0.740 0.709 0.771 0.709 0.772 0.709 0.772 0.704 0.767 0.678 0.740
transferred examples 0.749 0.777 0.577 0.557 0.738 0.766 0.743 0.771 0.743 0.770 0.712 0.735 0.700 0.721

TABLE 12: ALL RESULT VALUES FOR THE CIFAR10 DATASET AND TARGET MODEL ResNet

Accuracy and f1-Scores of the Alarm Models when tested against: (acc; f1-score)
Alarm Models trained
with: FGSM C&W DeepFool PGD BIM all attacks

combined
transferred
examples

FGSM 0.810 0.815 0.559 0.446 0.812 0.820 0.812 0.821 0.812 0.821 0.761 0.761 0.680 0.651
C&W 0.701 0.715 0.707 0.727 0.698 0.716 0.697 0.716 0.695 0.713 0.703 0.722 0.692 0.710
DeepFool 0.819 0.827 0.568 0.469 0.822 0.833 0.823 0.835 0.823 0.834 0.774 0.778 0.684 0.660
PGD 0.822 0.826 0.560 0.434 0.824 0.831 0.826 0.833 0.825 0.832 0.772 0.769 0.670 0.628
BIM 0.819 0.825 0.559 0.445 0.821 0.830 0.822 0.832 0.822 0.832 0.770 0.771 0.664 0.626
all attacks combined 0.788 0.812 0.677 0.686 0.792 0.818 0.793 0.820 0.793 0.819 0.771 0.796 0.729 0.750
transferred examples 0.672 0.613 0.570 0.440 0.655 0.593 0.655 0.595 0.653 0.592 0.638 0.568 0.687 0.646

TABLE 13: PRECISION AND RECALL OF THE INDIVIDUAL ALARM MODELS. EACH ALARM MODEL IS TRAINED AND
TESTED WITH THE FEATURES EXTRACTED FOR ONE ATTACK METHOD. SUPPORTING THE MAIN RESULTS OF THE
PROOF-OF-CONCEPT EVALUATION

Dataset Target Model Precision and recall of the Alarm Models with the according attacks: (prec.; rec.)
FGSM C&W DeepFool PGD BIM

MNIST LeNet 0.995; 0.981 0.981; 0.974 0.990; 0.972 0.995; 0.987 0.994; 0.986
kerasExM 0.995; 0.989 0.981; 0.968 0.989; 0.975 0.995; 0.990 0.994; 0.989

CIFAR10 kerasExC 0.871; 0.824 0.719; 0.749 0.868; 0.843 0.853; 0.833 0.864; 0.850
ResNet 0.861; 0.774 0.781; 0.680 0.891; 0.782 0.870; 0.799 0.881; 0.788

TABLE 14: CONFUSION MATRIX VALUES FOR ALL DATASETS, TARGET MODELS, AND ATTACK METHODS. EACH
RESULT CORRESPONDS TO THE DETECTION OF ADVERSARIAL ATTACK METHODS WITH THE SPECIFIED TARGET
MODEL

Dataset Target Model Attack Performance of the Alarm Models when tested against
the according attack method
True Positive True Negative False Positive False Negative

MNIST LeNet FGSM 0.981±0.004 0.995±0.002 0.005±0.002 0.019±0.004
C&W 0.974±0.005 0.980±0.003 0.020±0.003 0.026±0.005
DeepFool 0.972±0.006 0.992±0.002 0.008±0.002 0.028±0.006
PGD 0.987±0.003 0.995±0.002 0.005±0.002 0.013±0.003
BIM 0.986±0.004 0.994±0.002 0.006±0.002 0.014±0.004

kerasExM FGSM 0.989±0.003 0.995±0.002 0.005±0.002 0.011±0.003
C&W 0.968±0.005 0.981±0.004 0.019±0.004 0.032±0.005
DeepFool 0.975±0.006 0.992±0.003 0.008±0.003 0.025±0.006
PGD 0.990±0.002 0.995±0.003 0.005±0.003 0.010±0.002
BIM 0.989±0.003 0.994±0.002 0.006±0.002 0.011±0.003

LSTM Transfer 0.890±0.012 0.968±0.005 0.032±0.005 0.110±0.012
CapsuleNN Transfer 0.946±0.022 0.929±0.036 0.071±0.036 0.054±0.022

CIFAR10 kerasExC FGSM 0.824±0.010 0.864±0.015 0.136±0.015 0.176±0.010
C&W 0.749±0.018 0.729±0.011 0.271±0.011 0.251±0.018
DeepFool 0.843±0.010 0.864±0.011 0.136±0.011 0.157±0.010
PGD 0.833±0.013 0.849±0.012 0.151±0.012 0.167±0.013
BIM 0.841±0.010 0.860±0.015 0.140±0.015 0.159±0.010

ResNet FGSM 0.774±0.015 0.852±0.012 0.148±0.012 0.226±0.015
C&W 0.680±0.015 0.743±0.010 0.257±0.010 0.320±0.015
DeepFool 0.782±0.015 0.875±0.011 0.125±0.011 0.218±0.015
PGD 0.799±0.010 0.857±0.008 0.143±0.008 0.201±0.009
BIM 0.788±0.009 0.865±0.013 0.135±0.013 0.212±0.009

NLP and Audio LSTM (NLP) Custom Attack 0.973±0.032 0.962±0.032 0.037±0.031 0.027±0.032
DeepSpeech Carlini’s Attack 1.000±0.000 0.674±0.069 0.326±0.069 0.000±0.000

	Introduction
	Related Work and Background
	Adversarial Attack Methods
	Defenses against Adversarial Examples
	Changes to the Training Process or Input Data
	Modifying the Network
	External Network Add-Ons
	Detecting Adversarial Examples

	Considered Threat Models
	Methodology
	Generating Adversarial Examples
	Extracting Dense Layer Neuron Coverage
	Training an Alarm Model
	Concept Overview

	Implementation and Experimental Setup
	Considered Datasets
	Target Models
	Considered Attack Methods
	Alarm Model Architecture and Training
	Main Test Scenario
	Additional Experiments
	Experiment Overview

	Evaluation
	Feature Analysis
	Results of the Main Proof-of-Concept
	Results of Additional Experiments

	Robustness Against Adaptive Attacks
	Experimental Setup
	Evaluation

	Discussion
	Conclusion
	References
	Appendix A: Alarm Model Architecture
	Appendix B: All Result Values
	Appendix C: Confusion Matrix Values
	Appendix D: Adversarial Example Generation for the NLP Scenario
	Appendix E: C&W Attack Parameters for the Adaptive Attack

